You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Chang et al.: "Weakly-Supervised Semantic Segmentation via Sub-category Exploration" CVPR2020
ICD: "Learning Integral Objects with Intra-Class Discriminator for Weakly-Supervised Semantic Segmentation" CVPR2020
Fan et al.: "Employing multi-estimations for weakly-supervised semantic segmentation" ECCV2020
MCIS: "Mining Cross-Image Semantics for Weakly Supervised Semantic Segmentation" 2020
BES: "Weakly Supervised Semantic Segmentation with Boundary Exploration" ECCV2020
CONTA: "Causal intervention for weakly-supervised semantic segmentation" NeurIPS2020
Method: "Find it if You Can: End-to-End Adversarial Erasing for Weakly-Supervised Semantic Segmentation" 2020arXiv
Zhang et al.: "Splitting vs. Merging: Mining Object Regions with Discrepancy and Intersection Loss for Weakly Supervised Semantic Segmentation" ECCV2020
LIID "Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation" TPAMI2020
2019
IRN: "Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations" CVPR2019
Ficklenet: " Ficklenet: Weakly and semi-supervised semantic image segmentation using stochastic inference" CVPR2019
Lee et al.: "Frame-to-Frame Aggregation of Active Regions in Web Videos for Weakly Supervised Semantic Segmentation" ICCV2019
OAA: "Integral Object Mining via Online Attention Accumulation" ICCV2019
SSDD: "Self-supervised difference detection for weakly-supervised semantic segmentation" ICCV2019
2018
DSRG: "Weakly-supervised semantic segmentation network with deep seeded region growing" CVPR2018
AffinityNet: "Learning Pixel-level Semantic Affinity with Image-level Supervision for Weakly Supervised Semantic Segmentation" CVPR2018
GAIN: " Tell me where to look: Guided attention inference network" CVPR2018
Scribble Hides Class: Promoting Scribble-Based Weakly-Supervised Semantic Segmentation with Its Class Label AAAI2024
1.4. Supervised by point
WhatsPoint: "What’s the Point: Semantic Segmentation with Point Supervision" ECCV2016
PCAM: "PCAMs: Weakly Supervised Semantic Segmentation Using Point Supervision" arxiv2020
2. Performance list
2016-2022
2.1. Results on PASCAL VOC dataset
Image-level supervision without extra data
Method
Pub.
Bac. C
Arc. S
Sup.
Extra data
Pre.S
val
test
AffinityNet
CVPR18
ResNet38
ResNet38
I
-
?
61.7
63.7
ICD
CVPR20
VGG16
ResNet101 DeepLabv1
I
-
?
64.1
64.3
IRN
CVPR19
ResNet50
ResNet50 DeepLabv2
I
-
I
63.5
64.8
IAL
IJCV20
ResNet?
ResNet?
I
-
I
64.3
65.4
SSDD (PSA)
ICCV19
ResNet38
ResNet38
I
-
I
64.9
65.5
SEAM
CVPR20
ResNet38
ResNet38 DeepLabv2
I
-
I
64.5
65.7
Chang et al.
CVPR20
ResNet38
ResNet101 DeepLabv2
I
-
?
66.1
65.9
RRM
AAAI20
ResNet38
ResNet101 DeepLabv2
I
-
?
66.3
66.5
BES
ECCV20
ResNet50
ResNet101 DeepLabv2
I
-
?
65.7
66.6
AFA
CVPR22
MiT-B1
-
I
-
?
66.0
66.3
CONTA (+SEAM)
NeurIPS20
ResNet38
ResNet101 DeepLabv2
I
-
?
66.1
66.7
ESC-Net
ICCV21
ResNet38
ResNet38 DeepLabv2
I
-
I
66.6
67.6
Ru et al.
IJCAI21
ResNet101
ResNet101 DeepLabv2
I
-
?
67.2
67.3
WSGCN (IRN)
ICME21
ResNet50
ResNet101 DeepLabv2
I
-
I
66.7
68.8
CPN
ICCV21
ResNet38
ResNet38 DeepLabv1
I
-
?
67.8
68.5
RPNet
TMM21
ResNet101
ResNet50 DeepLabv2
I
-
I
68.0
68.2
AdvCAM
CVPR21
ResNet50
ResNet101 DeepLabv2
I
-
I
68.1
68.0
ReCAM
CVPR22
ResNet50
ResNet101 DeepLabv2
I
-
I
68.5
68.4
PMM
ICCV21
ResNet38
ResNet38 PSPnet
I
-
?
68.5
69.0
WSGCN (IRN)
ICME21
ResNet50
ResNet101 DeepLabv2
I
-
I+C
68.7
69.3
ASDT
arxiv22
ResNet38
ResNet101 DeepLabv2
I
-
I
69.7
70.1
PMM
ICCV21
Res2Net101
Res2Net101 PSPnet
I
-
?
70.0
70.5
ASDT
arxiv22
ResNet38
Res2Net101 PSPnet
I
-
I
71.1
71.0
MCTformer
CVPR22
DeiT-S
ResNet38 DeeplabV1
I
-
?
71.9
71.6
Box-level supervision
Method
Pub.
Bac. C
Arc. S
Sup.
Extra data
Pre.S
val
test
BBAM
CVPR21
?
ResNet101 DeepLabv2
B
MCG
I
73.7
73.7
WSSL
ICCV15
-
VGG16 DeepLabv1
B
-
I
60.6
62.2
Song et al.
CVPR19
-
ResNet101 DeepLabv1
B
-
I
70.2
-
SPML (Song et al.)
ICLR21
-
ResNet101 DeepLabv2
B
-
I
73.5
74.7
Oh et al.
CVPR21
ResNet101
ResNet101 DeepLabv2
B
-
I+C
74.6
76.1
Scribble-level supervision
Method
Pub.
Bac. C
Arc. S
Sup.
Extra data
Pre.S
val
test
Scribblesup
CVPR16
-
VGG16 DeepLabv1
S
-
?
63.1
-
NormalCut
CVPR18
-
ResNet101 DeepLabv1
S
Saliency
?
74.5
-
KernelCut
ECCV18
-
ResNet101 DeepLabv1
S
-
?
75.0
-
BPG
IJCAI19
-
ResNet101 DeepLabv2
S
-
?
76.0
-
SPML (KernelCut)
ICLR21
-
ResNet101 DeepLabv2
S
-
I
76.1
-
A2GNN
TPAMI21
-
?
S
-
?
76.2
76.1
DFR
arxiv21
-
UperNet+Swin Transformer
S
22KImageNet
-
82.8
82.9
Point-level supervision
Method
Pub.
Bac. C
Arc. S
Sup.
Extra data
Pre.S
val
test
WhatsPoint
ECCV16
-
VGG16 FCN
P
Objectness
I
46.1
-
PCAM
arxiv20
ResNet50
DeepLabv3+
P
-
?
70.5
-
2.2. Results on MS-COCO dataset
Image-level supervision with extra data
Method
Pub.
Bac. C
Arc. S
Sup.
Extra data
val
test
AuxSegNet
ICCV21
ResNet38
-
I
Saliency
33.9
-
EPS
CVPR21
ResNet38
ResNet101 DeepLabv2
I
Saliency
35.7
-
L2G
CVPR22
L2G
VGG16 DeepLabv2
I
Saliency
42.7
-
L2G
CVPR22
L2G
ResNet101 DeepLabv2
I
Saliency
44.2
-
Image-level supervision without extra data
Method
Pub.
Bac. C
Arc. S
Sup.
Extra data
val
test
MCTformer
CVPR22
DeiT-S
ResNet38 DeeplabV1
I
-
42.0
-
ReCAM (AdvCAM + IRN)
CVPR22
ResNet50
ResNet101 DeepLabv2
I
-
45.0
-
3. Dataset
PASCAL VOC 2012
@article{everingham2010pascal,
title={The pascal visual object classes (voc) challenge},
author={Everingham, Mark and Van Gool, Luc and Williams, Christopher KI and Winn, John and Zisserman, Andrew},
journal={International journal of computer vision},
volume={88},
number={2},
pages={303--338},
year={2010},
publisher={Springer}
}
MS COCO 2014
@inproceedings{lin2014microsoft,
title={Microsoft coco: Common objects in context},
author={Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence},
booktitle={European conference on computer vision},
pages={740--755},
year={2014},
organization={Springer}
}
4. Awesome-list of Weakly-supervised Learning from Our Team