forked from kenshohara/3D-ResNets-PyTorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
128 lines (107 loc) · 5.05 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import torch
from torch import nn
from models import resnet, resnet2p1d, pre_act_resnet, wide_resnet, resnext, densenet
def get_module_name(name):
name = name.split('.')
if name[0] == 'module':
i = 1
else:
i = 0
if name[i] == 'features':
i += 1
return name[i]
def get_fine_tuning_parameters(model, ft_begin_module):
if not ft_begin_module:
return model.parameters()
parameters = []
add_flag = False
for k, v in model.named_parameters():
if ft_begin_module == get_module_name(k):
add_flag = True
if add_flag:
parameters.append({'params': v})
return parameters
def generate_model(opt):
assert opt.model in [
'resnet', 'resnet2p1d', 'preresnet', 'wideresnet', 'resnext', 'densenet'
]
if opt.model == 'resnet':
model = resnet.generate_model(model_depth=opt.model_depth,
n_classes=opt.n_classes,
n_input_channels=opt.n_input_channels,
shortcut_type=opt.resnet_shortcut,
conv1_t_size=opt.conv1_t_size,
conv1_t_stride=opt.conv1_t_stride,
no_max_pool=opt.no_max_pool,
widen_factor=opt.resnet_widen_factor)
elif opt.model == 'resnet2p1d':
model = resnet2p1d.generate_model(model_depth=opt.model_depth,
n_classes=opt.n_classes,
n_input_channels=opt.n_input_channels,
shortcut_type=opt.resnet_shortcut,
conv1_t_size=opt.conv1_t_size,
conv1_t_stride=opt.conv1_t_stride,
no_max_pool=opt.no_max_pool,
widen_factor=opt.resnet_widen_factor)
elif opt.model == 'wideresnet':
model = wide_resnet.generate_model(
model_depth=opt.model_depth,
k=opt.wide_resnet_k,
n_classes=opt.n_classes,
n_input_channels=opt.n_input_channels,
shortcut_type=opt.resnet_shortcut,
conv1_t_size=opt.conv1_t_size,
conv1_t_stride=opt.conv1_t_stride,
no_max_pool=opt.no_max_pool)
elif opt.model == 'resnext':
model = resnext.generate_model(model_depth=opt.model_depth,
cardinality=opt.resnext_cardinality,
n_classes=opt.n_classes,
n_input_channels=opt.n_input_channels,
shortcut_type=opt.resnet_shortcut,
conv1_t_size=opt.conv1_t_size,
conv1_t_stride=opt.conv1_t_stride,
no_max_pool=opt.no_max_pool)
elif opt.model == 'preresnet':
model = pre_act_resnet.generate_model(
model_depth=opt.model_depth,
n_classes=opt.n_classes,
n_input_channels=opt.n_input_channels,
shortcut_type=opt.resnet_shortcut,
conv1_t_size=opt.conv1_t_size,
conv1_t_stride=opt.conv1_t_stride,
no_max_pool=opt.no_max_pool)
elif opt.model == 'densenet':
model = densenet.generate_model(model_depth=opt.model_depth,
n_classes=opt.n_classes,
n_input_channels=opt.n_input_channels,
conv1_t_size=opt.conv1_t_size,
conv1_t_stride=opt.conv1_t_stride,
no_max_pool=opt.no_max_pool)
return model
def load_pretrained_model(model, pretrain_path, model_name, n_finetune_classes):
if pretrain_path:
print('loading pretrained model {}'.format(pretrain_path))
pretrain = torch.load(pretrain_path, map_location='cpu')
model.load_state_dict(pretrain['state_dict'])
tmp_model = model
if model_name == 'densenet':
tmp_model.classifier = nn.Linear(tmp_model.classifier.in_features,
n_finetune_classes)
else:
tmp_model.fc = nn.Linear(tmp_model.fc.in_features,
n_finetune_classes)
return model
def make_data_parallel(model, is_distributed, device):
if is_distributed:
if device.type == 'cuda' and device.index is not None:
torch.cuda.set_device(device)
model.to(device)
model = nn.parallel.DistributedDataParallel(model,
device_ids=[device])
else:
model.to(device)
model = nn.parallel.DistributedDataParallel(model)
elif device.type == 'cuda':
model = nn.DataParallel(model, device_ids=None).cuda()
return model