forked from Shinypuff/AdversarialAttacks_SMILES2024
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_discriminator.py
195 lines (158 loc) · 6.95 KB
/
train_discriminator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import os
import warnings
import hydra
import torch
from hydra.utils import instantiate
from omegaconf import DictConfig
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from src.config import get_criterion, get_disc_list, get_model
from src.data import MyDataset, load_data, transform_data
from src.estimation.estimators import AttackEstimator
from src.training.train import DiscTrainer
from src.utils import save_config, save_compiled_config
warnings.filterwarnings("ignore")
CONFIG_NAME = "train_disc_config"
torch.cuda.empty_cache()
@hydra.main(config_path="config/my_configs", config_name=CONFIG_NAME, version_base=None)
def main(cfg: DictConfig):
augmentator = (
[instantiate(trans) for trans in cfg["transform_data"]]
if cfg["transform_data"]
else None
)
X_train, y_train, X_test, y_test = load_data(cfg["dataset"]['name'])
if len(set(y_test)) > 2:
return None
X_train, X_test, y_train, y_test = transform_data(
X_train,
X_test,
y_train,
y_test,
slice_data=cfg["slice"],
)
train_loader = DataLoader(
MyDataset(X_train, y_train),
batch_size=cfg["batch_size"],
shuffle=True,
)
test_loader = DataLoader(
MyDataset(X_test, y_test),
batch_size=cfg["batch_size"],
shuffle=False,
)
device = torch.device(cfg["cuda"] if torch.cuda.is_available() else "cpu")
attack_model_path = os.path.join(
cfg["model_folder"],
f"model_{cfg['model_id_attack']}_{cfg['dataset']['name']}.pt",
)
attack_model = get_model(
cfg["attack_model"]["name"],
cfg["attack_model"]["params"],
path=attack_model_path,
device=device,
train_mode=cfg["attack_model"]["attack_train_mode"],
)
criterion = get_criterion(cfg["criterion_name"], cfg["criterion_params"])
if cfg["use_disc_check"]:
disc_check_list = get_disc_list(
model_name=cfg["disc_model_check"]["name"],
model_params=cfg["disc_model_check"]["params"],
list_disc_params=cfg["list_check_model_params"],
device=device,
path=cfg["disc_path"],
train_mode=False,
)
else:
disc_check_list = None
estimator = AttackEstimator(
disc_check_list,
cfg["metric_effect"],
cfg["metric_hid"],
batch_size=cfg["estimator_batch_size"],
)
for model_id in cfg["model_ids"]:
logger = SummaryWriter(cfg["save_path"] + "/tensorboard")
if cfg["enable_optimization"]:
attack_const_params = dict(cfg["attack"]["attack_params"])
attack_const_params["model"] = attack_model
attack_const_params["criterion"] = criterion
attack_const_params["estimator"] = estimator
if "list_reg_model_params" in cfg["attack"]:
attack_const_params["disc_models"] = get_disc_list(
model_name=cfg["disc_model_reg"]["name"],
model_params=cfg["disc_model_reg"]["params"],
list_disc_params=cfg["attack"]["list_reg_model_params"],
device=device,
path=cfg["disc_path"],
train_mode=cfg["disc_model_reg"]["attack_train_mode"],
)
const_params = {
"attack_params": attack_const_params,
"logger": logger,
"print_every": cfg["print_every"],
"device": device,
"seed": model_id,
"train_self_supervised": cfg["train_self_supervised"],
}
disc_trainer = DiscTrainer.initialize_with_optimization(
train_loader, test_loader, cfg["optuna_optimizer"], const_params
)
disc_trainer.train_model(train_loader, test_loader, augmentator)
if not cfg["test_run"]:
model_save_name = f"{model_id}"
new_save_path = (
cfg["save_path"]
+ "/"
+ f'{cfg["attack"]["short_name"]}_eps={round(disc_trainer.attack.eps, 4)}_nsteps={cfg["attack"]["attack_params"]["n_steps"]}'
)
save_config(new_save_path, CONFIG_NAME, CONFIG_NAME)
disc_trainer.save_result(new_save_path, model_save_name)
else:
alphas = [0]
if "alpha" in cfg["attack"]["attack_params"]:
alphas = cfg["attack"]["attack_params"]["alpha"]
for alpha in alphas:
for eps in cfg["attack"]["attack_params"]["eps"]:
print(
"----- Current epsilon:", eps, "\n----- Current alpha:", alpha
)
attack_params = dict(cfg["attack"]["attack_params"])
attack_params["model"] = attack_model
attack_params["criterion"] = criterion
attack_params["estimator"] = estimator
attack_params["alpha"] = alpha
attack_params["eps"] = eps
if "list_reg_model_params" in cfg["attack"]:
attack_params["disc_models"] = get_disc_list(
model_name=cfg["disc_model_reg"]["name"],
model_params=cfg["disc_model_reg"]["params"],
list_disc_params=cfg["attack"]["list_reg_model_params"],
device=device,
path=cfg["disc_path"],
train_mode=cfg["disc_model_reg"]["attack_train_mode"],
)
trainer_params = dict(cfg["training_params"])
trainer_params["logger"] = logger
trainer_params["device"] = device
trainer_params["seed"] = model_id
trainer_params["train_self_supervised"] = cfg[
"train_self_supervised"
]
trainer_params["attack_name"] = cfg["attack"]["name"]
trainer_params["attack_params"] = attack_params
if not cfg["test_run"]:
model_save_name = f"{model_id}"
new_save_path = (
cfg["save_path"]
+ "/"
+ f'{cfg["attack"]["short_name"]}_eps={eps}_nsteps={cfg["attack"]["attack_params"]["n_steps"]}'
)
save_config(new_save_path, CONFIG_NAME, CONFIG_NAME)
save_compiled_config(cfg, new_save_path)
disc_trainer = DiscTrainer.initialize_with_params(**trainer_params)
disc_trainer.train_model(train_loader, test_loader, augmentator)
if not cfg["test_run"]:
disc_trainer.save_result(new_save_path, model_save_name)
if __name__ == "__main__":
main()