This repository has been archived by the owner on Nov 26, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
atten_trail_trail.py
160 lines (120 loc) · 5.33 KB
/
atten_trail_trail.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import requests
import face_recognition
import cv2
import main_using_csv
import time
import pyttsx3
engine = pyttsx3.init()
import numpy as np
##################################
def main(identity):
start=time.time()
period = 60
#########################################
############## ###########333
def email_alert(first,second):
report = {}
report["value1"] = first+" was absent in "+identity+" class"
#requests.post("https://maker.ifttt.com/trigger/attendance/with/key/k8H_gZtgd2zBf_TEplDRrKKMRaD0OId-0gSNhWEUDvj", data=report)
if (first=="ashwin"):
requests.post("https://maker.ifttt.com/trigger/attendance/with/key/k8H_gZtgd2zBf_TEplDRrKKMRaD0OId-0gSNhWEUDvj", data=report)
elif(first=="aparna") :
requests.post("https://maker.ifttt.com/trigger/attendance/with/key/bdrm5u6QnaHdC188wU4M9HirXfRMD45BWuWd2zfyyAk", data=report)
#######################################
###############FACE_RECOGNITION WORK###############
# Get a reference to webcam #0 (the default one)
video_capture = cv2.VideoCapture(0)
# Load a sample picture and learn how to recognize it.
ashwin = face_recognition.load_image_file("ashwin.jpg")
face_encoding = face_recognition.face_encodings(ashwin,num_jitters = 30)[0]
aparna = face_recognition.load_image_file("appu.jpeg")
face_encoding1 = face_recognition.face_encodings(aparna,num_jitters = 30)[0]
known_face_encodings = [
face_encoding, face_encoding1
]
known_face_names = [
"ashwin", "aparna"
]
# Initialize some variables
face_locations = []
face_encodings = []
face_names = []
#process_this_frame = True
kids = ['ashwin', 'aparna','ankit']
process_this_frame = True
#count = 0
url = "http://172.16.3.0:8080/shot.jpg"
while True:
'''img_resp = requests.get(url)
img_arr = np.array(bytearray(img_resp.content), dtype=np.uint8)
frame = cv2.imdecode(img_arr, -1)'''
# Grab a single frame of video
ret, frame = video_capture.read()
# Resize frame of video to 1/4 size for faster face recognition processing
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
# Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
rgb_small_frame = small_frame[:, :, ::-1]
# Only process every other frame of video to save time
if process_this_frame:
# Find all the faces and face encodings in the current frame of video
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
face_names = []
for face_encoding in face_encodings:
# See if the face is a match for the known face(s)
matches = face_recognition.compare_faces(known_face_encodings, face_encoding,tolerance=0.5)
name = "Unknown"
# If a match was found in known_face_encodings, just use the first one.
if True in matches:
first_match_index = matches.index(True)
name = known_face_names[first_match_index]
face_names.append(name)
process_this_frame = not process_this_frame
# Display the results
for (top, right, bottom, left), name in zip(face_locations, face_names):
# Scale back up face locations since the frame we detected in was scaled to 1/4 size
top *= 4
right *= 4
bottom *= 4
left *= 4
# Draw a box around the face
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
# Draw a label with a name below the face
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left + 6, bottom - 6), font, 0.5, (255, 255, 255), 1)
################FACE_RECOG WORK#############################
print(name+ " : PRESENT")
#students.add(name)
#email_alert(name)
if name in kids :
print("yes")
#email_alert('Present :' +str(name))
#data_entry(name)
main_using_csv.call(name,identity)
kids.remove(name)
else:
print("this is pass")
pass
cv2.imshow('Video', frame)
'''count = count+1
if(count>1000):
break'''
if time.time()>start+period:
break
# Hit 'q' on the keyboard to quit!
if cv2.waitKey(1) & 0xFF == ord('q'):
break
print("Absent students")
engine.say("Absent students are")
'''print(kids)
email_alert('Absent members :' +str(kids))'''
for i in kids :
email_alert(i,identity)
print(i+" present")
engine.say(i)
engine.runAndWait()
video_capture.release()
cv2.destroyAllWindows()
if __name__=="__main__":
main()