-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfredmd_submit.R
211 lines (176 loc) · 6.82 KB
/
fredmd_submit.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# run these codes prior to analysis
install.packages("readr")
install.packages("pracma")
devtools::install_github("cykbennie/fbi")
library(fbi)
source('codes.R')
fluctuation_test <- function (loss1, loss2, mu = 0.2, dmv_fullsample = TRUE, lag_truncate = 0,
time_labels = NULL, conf_level = 0.05, ...) {
# modified ver. of murphydiagram::fluctuation_test
if (length(loss1) != length(loss2)) {
stop("Vectors of losses must have the same length")
}
if (all(abs(seq(from = 0.1, to = 0.9, by = 0.1) - mu) > 1e-12)) {
stop("mu must be in {0.1, 0.2, ..., 0.9}")
}
if (!lag_truncate %in% 0:5) {
stop("lag_truncate must be in {0, 1, .., 5}")
}
if (!is.null(time_labels) & length(time_labels) != length(loss1)) {
warning("Specified time labels are inconsistent - simple integers used instead")
time_labels <- NULL
}
if (!conf_level %in% c(0.05, 0.1)) {
stop("significance_level must be either 0.05 or 0.1")
}
CV <- cbind(seq(from = 0.1, to = 0.9, by = 0.1), c(3.393,
3.179, 3.012, 2.89, 2.779, 2.634, 2.56, 2.433, 2.248),
c(3.17, 2.948, 2.766, 2.626, 2.5, 2.356, 2.252, 2.13,
1.95))
vHAC2 <- function(ld, lag_truncate) {
murphydiagram:::vHAC(ld, k = lag_truncate, meth = "Bartlett")$hac
}
cex_gen <- 1
P <- length(loss1)
m <- round(mu * P)
ld <- loss1 - loss2
dm_num <- dm_den <- rep(0, P - m + 1)
for (jj in m:P) {
ind <- which(m:P == jj)
ld_tmp <- ld[(jj - m + 1):jj]
dm_num[ind] <- mean(ld_tmp)
dm_den[ind] <- sqrt(vHAC2(ld_tmp, lag_truncate)/m)
}
s2hat <- c(vHAC2(ld, lag_truncate))
dm1 <- sqrt(m) * dm_num/sqrt(s2hat)
dm2 <- dm_num/dm_den
if (dmv_fullsample) {
dm_final <- dm1
}
else {
dm_final <- dm2
}
if (conf_level == 0.05) {
CVs <- CV[abs(CV[, 1] - mu) < 1e-12, 2] * c(-1, 1)
}
else if (conf_level == 0.1) {
CVs <- CV[abs(CV[, 1] - mu) < 1e-12, 3] * c(-1, 1)
}
plot(x = m:length(loss1), y = dm_final, ylim = max(abs(dm_final)) * c(-1, 1),
bty = "n", ylab = "", xlab = "Time (End of Rolling Window)",
type = "l", col = "cornflowerblue", lwd = 2.5, axes = FALSE,
cex.lab = cex_gen, ...)
axis(2, cex.axis = cex_gen)
abline(h = CVs, lwd = 3.5)
abline(h = 0, lwd = 1.8, lty = 2)
if (is.null(time_labels)) {
time_labels <- 1:length(loss1)
}
inds <- floor(seq(from = m, to = length(time_labels), length.out = 5))
axis(1, at = inds, labels = time_labels[inds], cex.axis = cex_gen)
list(df = data.frame(time = time_labels[m:length(loss1)],
dmstat = dm_final), CV = CVs)
}
# data preparation
data <- fredmd("fredmd.csv")
data <- as.data.frame(data)
data$date <- format(as.Date(data$date, "%Y-%m-%d"), "%Y-%m")
data <- data[data$date > "1959-12" & data$date < "2024-01", ]
data <- data[, !is.na(data[1, ])]
data <- data[, apply(data, 2, function(z){ sum(is.na(z)) }) == 0]
x <- t(as.matrix(data[, - 1]))
x <- x[!(rownames(x) %in% c("NONBORRES", "M1SL")), ]
dim(x) # n = 768, p = 109
## rolling window-based forecasting exercise
library(HDRFA)
r <- c(5, 6)[1]
m <- 12 * 10
p <- dim(x)[1]; n <- dim(x)[2]
err <- array(0, dim = c(2, n, 2, 3, 24))
dimnames(err)[[3]] <- c('in-sample', 'forecast')
dimnames(err)[[4]] <- c('trunc', 'no-trunc', 'HDRFA')
dimnames(err)[[5]] <- 1:24
trunc.param.seq <- rep(0, n)
ind <- which(rownames(x) %in% c("INDPRO", "CPIAUCSL"))
for(tt in m:(n - 24)){
int <- (tt - m + 1):tt
for(ll in 1:dim(err)[[4]]){
if(ll == 1){
out <- rob.tfa(x[, int], r = r, standardize = 'mean',
tau = NULL, kappa = NULL, nfold = 3)
max.tau <- as.numeric(dimnames(out$tau.cv)[[1]])[1]
trunc.param.seq[tt] <- out$tau
loading <- out$loading[[1]]
eigval <- out$eigval[[1]][1:r]
ff <- out$f[, dim(out$f)[2]]
center <- out$center
sc <- out$sc
proj <- loading %*% t(loading) / p
tx <- trunc.tnsr((x[, int] - center) / sc, trunc.param.seq[tt])
} else if(ll == 2){
out <- rob.tfa(x[, int], r = r, standardize = 'mean',
tau = max.tau * 1.1, kappa = NULL, nfold = 3)
loading <- out$loading[[1]]
eigval <- out$eigval[[1]][1:r]
ff <- out$f[, dim(out$f)[2]]
center <- out$center
sc <- out$sc
proj <- loading %*% t(loading) / p
tx <- (x[, int] - center) / sc
} else if(ll == 3){
center <- out$center
sc <- out$sc
tx <- (x[, int] - center) / sc
tryCatch(hpca <- HDRFA::HPCA(t(tx), Method = 'E', r = r), warning = function(w){ print(tt) })
loading <- hpca$Lhat
eigval <- diag(t(hpca$Fhat) %*% hpca$Fhat / m)
ff <- hpca$Fhat[dim(hpca$Fhat)[1], ]
proj <- loading %*% t(loading) / p
}
for(hh in 1:24){
h <- hh
z <- (x[, tt + h, drop = FALSE] - center) / sc
Gamma_x <- tx[, 1:(m - h)] %*% t(tx[, 1:(m - h) + h])/m
if(ll == 1){
fc <- (proj %*% trunc.tnsr(z, trunc.param.seq[tt])) * sc + center
err[, tt, 1, ll, hh] <- fc[ind] - x[ind, tt + h, drop = FALSE]
} else{
fc <- (proj %*% z) * sc + center
err[, tt, 1, ll, hh] <- fc[ind] - x[ind, tt + h, drop = FALSE]
}
fc <- proj %*% t(Gamma_x) %*% t(t(loading) /eigval) %*% ff
fc <- fc * sc + center
err[, tt, 2, ll, hh] <- fc[ind] - x[ind, tt + h, drop = FALSE]
}
}
}
ls <- list(err = err, trunc.param.seq = trunc.param.seq)
save(ls, file = paste("~/downloads/fredmd_forecasting_r", r, ".RData", sep = ""))
## results / run fluctation_test
jj <- 2 # 1: in-sample estimation 2: forecasting error
h <- 24 # number of lags to examine
kk <- 2 # 1: INDPRO 2: CPIAUCSL
nm <- c("INDPRO", "CPIAUCSL")[kk]
ll <- 1 # trunc
mm <- 2 # pca
loss1 <- c(apply(abs(ls$err[kk,, jj, ll, 1:h, drop = FALSE]), c(1, 2, 3, 4), mean))[-c(1:m, n - 1:24 + 1)]
loss2 <- c(apply(abs(ls$err[kk,, jj, mm, 1:h, drop = FALSE]), c(1, 2, 3, 4), mean))[-c(1:m, n - 1:24 + 1)]
par(mfrow = c(1, 1), mar = c(2.5, 2.5, 2.5, .5))
plot(x = 1:(n - 24 - m), y = loss1 - loss2,
bty = "n", ylab = "", xlab = "Time",
type = "l", col = "cornflowerblue", lwd = 2.5, axes = FALSE,
main = paste(nm, ': difference in the loss', sep = ''))
axis(2)
abline(h = 0, lwd = 1.8, lty = 2)
time_labels <- data$date[(m + 1):(n - 24)]
inds <- floor(seq(from = 1, to = length(time_labels), length.out = 5))
axis(1, at = inds, labels = time_labels[inds], cex.axis = 1)
for(mm in 1:3){
mu <- c(.2, .3, .4)[mm]
ft <- fluctuation_test(loss1, loss2, mu = mu, lag_truncate = 0,
conf_level = .1, dmv_fullsample = TRUE,
time_labels = data$date[(m + 1):(n - 24)],
main = paste(nm, ': mu = ', mu, sep = ''))
# print(ft$df$time[ft$df$dmstat < ft$CV[1]])
# print(ft$df$time[ft$df$dmstat > ft$CV[2]])
}