-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhomo_image.py
120 lines (86 loc) · 4.15 KB
/
homo_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import cv2
import numpy as np
import sys
if __name__ == "__main__":
frame = cv2.imread(sys.argv[1], cv2.IMREAD_GRAYSCALE)
image = cv2.imread(sys.argv[2], cv2.IMREAD_GRAYSCALE)
sift = cv2.xfeatures2d.SIFT_create()
# sift = cv2.ORB_create()
kp_image, desc_image = sift.detectAndCompute(image, None)
index_params = dict(algorithm=1, trees=5)
search_params = dict()
flann = cv2.FlannBasedMatcher(index_params, search_params)
kp_frame, desc_frame = sift.detectAndCompute(frame, None)
matches = flann.knnMatch(desc_image, desc_frame, k=2)
# matches = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True).knnMatch(desc_image, desc_frame, k=2)
good_points = []
#distance is the difference of 2 vector
for m, n in matches:
if m.distance < 0.6 * n.distance:
# if True:
good_points.append(m)
mapping_img = None
mapping_img = cv2.drawMatches(image, kp_image, frame, kp_frame, good_points, mapping_img, flags=2)
if len(good_points) > 10:
# delta_time = time.process_time()
query_pts = np.float32([kp_image[m.queryIdx].pt for m in good_points]).reshape(-1, 1, 2)
# print(np.linalg.norm((desc_image[good_points[0].queryIdx]) - (desc_grayframe[good_points[0].trainIdx])))
# print()
train_pts =np.float32([kp_frame[m.trainIdx].pt for m in good_points]).reshape(-1, 1, 2)
mat, mask = cv2.findHomography(query_pts, train_pts, cv2.RANSAC, 5.0)
# mat, mask = cv2.findFundamentalMat(query_pts, train_pts)
# mat = cv2.getPerspectiveTransform(query_pts, train_pts)
# mat_, mask_ = cv2.findHomography(query_pts, train_pts, cv2.RANSAC, 5.0)
real_train_pts = cv2.perspectiveTransform(query_pts, mat)
# for real_point, train_point in zip(real_train_pts, train_pts):
# print("{} {}".format(real_point, train_point))
# print(len(query_pts))
distance_filtered_query_pts = []
distance_filtered_train_pts = []
for i in range(len(query_pts)):
distance = np.linalg.norm(real_train_pts[i][0] - train_pts[i][0])
# print(distance)
if distance <= 10.0:
# if True:
# print(distance)
distance_filtered_query_pts.append(query_pts[i])
distance_filtered_train_pts.append(train_pts[i])
query_pts = np.float32(distance_filtered_query_pts)
# print(query_pts)
train_pts = np.float32(distance_filtered_train_pts)
mat, mask = cv2.findHomography(query_pts, train_pts, cv2.RANSAC, 5.0)
# mat, mask = cv2.findFundamentalMat(query_pts, train_pts)
# mat = cv2.getPerspectiveTransform(query_pts.astype(np.float32), train_pts.astype(np.float32))
# matches_mask = mask.ravel().tolist()
h, w = image.shape[:2]
pts = np.float32([
[0, 0], [0, h], [w, h], [w, 0]
]).reshape(-1, 1, 2)
warped = cv2.warpPerspective(frame, mat, (h, w))
dst = cv2.perspectiveTransform(pts, mat)
img_h, img_w = image.shape[:2]
frame_h, frame_w = frame.shape[:2]
match_w = img_w + frame_w
match_h = max(frame_h, img_h)
match = np.zeros((match_h, match_w), dtype="uint8")
match[0:img_h, 0:img_w] = image[:]
match[0: frame_h, -frame_w - 1:-1] = frame[:]
match = np.dstack([match] * 3)
for q_pt, t_pt in zip(query_pts, train_pts):
# start_pt = q_pt[0].astype("uint8")
start_pt = (int(q_pt[0][0]), int(q_pt[0][1]))
# print(start_pt)
# print(t_pt[0])
end_pt = (int(t_pt[0][0]) + img_w, int(t_pt[0][1]))
# print(end_pt)
cv2.line(match, tuple(start_pt), tuple(end_pt), (0, 0, 255), 1)
homography = cv2.polylines(frame, [np.int32(dst)], True, (255, 0, 0), 3)
cv2.imshow("Homography", homography)
else:
cv2.imshow("Homography", frame)
cv2.imshow("matching", mapping_img)
cv2.imshow("new_matching", match)
key = cv2.waitKey(0)
if key == ord('c'):
cv2.imwrite("homo.png", homography)
cv2.imwrite("matching.png", mapping_img)