forked from scikit-learn/scikit-learn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathisotonic.py
380 lines (298 loc) · 11.9 KB
/
isotonic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
# Authors: Fabian Pedregosa <fabian@fseoane.net>
# Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Nelle Varoquaux <nelle.varoquaux@gmail.com>
# License: BSD 3 clause
import numpy as np
from scipy import interpolate
from scipy.stats import spearmanr
from .base import BaseEstimator, TransformerMixin, RegressorMixin
from .utils import as_float_array, check_array, check_consistent_length
from .utils.fixes import astype
from ._isotonic import _isotonic_regression, _make_unique
import warnings
import math
__all__ = ['check_increasing', 'isotonic_regression',
'IsotonicRegression']
def check_increasing(x, y):
"""Determine whether y is monotonically correlated with x.
y is found increasing or decreasing with respect to x based on a Spearman
correlation test.
Parameters
----------
x : array-like, shape=(n_samples,)
Training data.
y : array-like, shape=(n_samples,)
Training target.
Returns
-------
`increasing_bool` : boolean
Whether the relationship is increasing or decreasing.
Notes
-----
The Spearman correlation coefficient is estimated from the data, and the
sign of the resulting estimate is used as the result.
In the event that the 95% confidence interval based on Fisher transform
spans zero, a warning is raised.
References
----------
Fisher transformation. Wikipedia.
http://en.wikipedia.org/w/index.php?title=Fisher_transformation
"""
# Calculate Spearman rho estimate and set return accordingly.
rho, _ = spearmanr(x, y)
increasing_bool = rho >= 0
# Run Fisher transform to get the rho CI, but handle rho=+/-1
if rho not in [-1.0, 1.0]:
F = 0.5 * math.log((1. + rho) / (1. - rho))
F_se = 1 / math.sqrt(len(x) - 3)
# Use a 95% CI, i.e., +/-1.96 S.E.
# http://en.wikipedia.org/wiki/Fisher_transformation
rho_0 = math.tanh(F - 1.96 * F_se)
rho_1 = math.tanh(F + 1.96 * F_se)
# Warn if the CI spans zero.
if np.sign(rho_0) != np.sign(rho_1):
warnings.warn("Confidence interval of the Spearman "
"correlation coefficient spans zero. "
"Determination of ``increasing`` may be "
"suspect.")
return increasing_bool
def isotonic_regression(y, sample_weight=None, y_min=None, y_max=None,
increasing=True):
"""Solve the isotonic regression model::
min sum w[i] (y[i] - y_[i]) ** 2
subject to y_min = y_[1] <= y_[2] ... <= y_[n] = y_max
where:
- y[i] are inputs (real numbers)
- y_[i] are fitted
- w[i] are optional strictly positive weights (default to 1.0)
Parameters
----------
y : iterable of floating-point values
The data.
sample_weight : iterable of floating-point values, optional, default: None
Weights on each point of the regression.
If None, weight is set to 1 (equal weights).
y_min : optional, default: None
If not None, set the lowest value of the fit to y_min.
y_max : optional, default: None
If not None, set the highest value of the fit to y_max.
increasing : boolean, optional, default: True
Whether to compute ``y_`` is increasing (if set to True) or decreasing
(if set to False)
Returns
-------
y_ : list of floating-point values
Isotonic fit of y.
References
----------
"Active set algorithms for isotonic regression; A unifying framework"
by Michael J. Best and Nilotpal Chakravarti, section 3.
"""
y = np.asarray(y, dtype=np.float)
if sample_weight is None:
sample_weight = np.ones(len(y), dtype=y.dtype)
else:
sample_weight = np.asarray(sample_weight, dtype=np.float)
if not increasing:
y = y[::-1]
sample_weight = sample_weight[::-1]
if y_min is not None or y_max is not None:
y = np.copy(y)
sample_weight = np.copy(sample_weight)
# upper bound on the cost function
C = np.dot(sample_weight, y * y) * 10
if y_min is not None:
y[0] = y_min
sample_weight[0] = C
if y_max is not None:
y[-1] = y_max
sample_weight[-1] = C
solution = np.empty(len(y))
y_ = _isotonic_regression(y, sample_weight, solution)
if increasing:
return y_
else:
return y_[::-1]
class IsotonicRegression(BaseEstimator, TransformerMixin, RegressorMixin):
"""Isotonic regression model.
The isotonic regression optimization problem is defined by::
min sum w_i (y[i] - y_[i]) ** 2
subject to y_[i] <= y_[j] whenever X[i] <= X[j]
and min(y_) = y_min, max(y_) = y_max
where:
- ``y[i]`` are inputs (real numbers)
- ``y_[i]`` are fitted
- ``X`` specifies the order.
If ``X`` is non-decreasing then ``y_`` is non-decreasing.
- ``w[i]`` are optional strictly positive weights (default to 1.0)
Parameters
----------
y_min : optional, default: None
If not None, set the lowest value of the fit to y_min.
y_max : optional, default: None
If not None, set the highest value of the fit to y_max.
increasing : boolean or string, optional, default: True
If boolean, whether or not to fit the isotonic regression with y
increasing or decreasing.
The string value "auto" determines whether y should
increase or decrease based on the Spearman correlation estimate's
sign.
out_of_bounds : string, optional, default: "nan"
The ``out_of_bounds`` parameter handles how x-values outside of the
training domain are handled. When set to "nan", predicted y-values
will be NaN. When set to "clip", predicted y-values will be
set to the value corresponding to the nearest train interval endpoint.
When set to "raise", allow ``interp1d`` to throw ValueError.
Attributes
----------
X_ : ndarray (n_samples, )
A copy of the input X.
y_ : ndarray (n_samples, )
Isotonic fit of y.
X_min_ : float
Minimum value of input array `X_` for left bound.
X_max_ : float
Maximum value of input array `X_` for right bound.
f_ : function
The stepwise interpolating function that covers the domain `X_`.
Notes
-----
Ties are broken using the secondary method from Leeuw, 1977.
References
----------
Isotonic Median Regression: A Linear Programming Approach
Nilotpal Chakravarti
Mathematics of Operations Research
Vol. 14, No. 2 (May, 1989), pp. 303-308
Isotone Optimization in R : Pool-Adjacent-Violators
Algorithm (PAVA) and Active Set Methods
Leeuw, Hornik, Mair
Journal of Statistical Software 2009
Correctness of Kruskal's algorithms for monotone regression with ties
Leeuw, Psychometrica, 1977
"""
def __init__(self, y_min=None, y_max=None, increasing=True,
out_of_bounds='nan'):
self.y_min = y_min
self.y_max = y_max
self.increasing = increasing
self.out_of_bounds = out_of_bounds
def _check_fit_data(self, X, y, sample_weight=None):
if len(X.shape) != 1:
raise ValueError("X should be a 1d array")
def _build_f(self, X, y):
"""Build the f_ interp1d function."""
# Handle the out_of_bounds argument by setting bounds_error
if self.out_of_bounds not in ["raise", "nan", "clip"]:
raise ValueError("The argument ``out_of_bounds`` must be in "
"'nan', 'clip', 'raise'; got {0}"
.format(self.out_of_bounds))
bounds_error = self.out_of_bounds == "raise"
if len(y) == 1:
# single y, constant prediction
self.f_ = lambda x: y.repeat(x.shape)
else:
self.f_ = interpolate.interp1d(X, y, kind='slinear',
bounds_error=bounds_error)
def _build_y(self, X, y, sample_weight):
"""Build the y_ IsotonicRegression."""
check_consistent_length(X, y, sample_weight)
X, y = [check_array(x, ensure_2d=False) for x in [X, y]]
y = as_float_array(y)
self._check_fit_data(X, y, sample_weight)
# Determine increasing if auto-determination requested
if self.increasing == 'auto':
self.increasing_ = check_increasing(X, y)
else:
self.increasing_ = self.increasing
# If sample_weights is passed, removed zero-weight values and clean order
if sample_weight is not None:
sample_weight = check_array(sample_weight, ensure_2d=False)
mask = sample_weight > 0
X, y, sample_weight = X[mask], y[mask], sample_weight[mask]
else:
sample_weight = np.ones(len(y))
order = np.lexsort((y, X))
order_inv = np.argsort(order)
X, y, sample_weight = [astype(array[order], np.float64, copy=False)
for array in [X, y, sample_weight]]
unique_X, unique_y, unique_sample_weight = _make_unique(X, y, sample_weight)
self.X_ = unique_X
self.y_ = isotonic_regression(unique_y, unique_sample_weight, self.y_min,
self.y_max, increasing=self.increasing_)
return order_inv
def fit(self, X, y, sample_weight=None):
"""Fit the model using X, y as training data.
Parameters
----------
X : array-like, shape=(n_samples,)
Training data.
y : array-like, shape=(n_samples,)
Training target.
sample_weight : array-like, shape=(n_samples,), optional, default: None
Weights. If set to None, all weights will be set to 1 (equal
weights).
Returns
-------
self : object
Returns an instance of self.
Notes
-----
X is stored for future use, as `transform` needs X to interpolate
new input data.
"""
# Build y_
self._build_y(X, y, sample_weight)
# Handle the left and right bounds on X
self.X_min_ = np.min(self.X_)
self.X_max_ = np.max(self.X_)
# Build f_
self._build_f(self.X_, self.y_)
return self
def transform(self, T):
"""Transform new data by linear interpolation
Parameters
----------
T : array-like, shape=(n_samples,)
Data to transform.
Returns
-------
T_ : array, shape=(n_samples,)
The transformed data
"""
T = as_float_array(T)
if len(T.shape) != 1:
raise ValueError("Isotonic regression input should be a 1d array")
# Handle the out_of_bounds argument by clipping if needed
if self.out_of_bounds not in ["raise", "nan", "clip"]:
raise ValueError("The argument ``out_of_bounds`` must be in "
"'nan', 'clip', 'raise'; got {0}"
.format(self.out_of_bounds))
if self.out_of_bounds == "clip":
T = np.clip(T, self.X_min_, self.X_max_)
return self.f_(T)
def predict(self, T):
"""Predict new data by linear interpolation.
Parameters
----------
T : array-like, shape=(n_samples,)
Data to transform.
Returns
-------
T_ : array, shape=(n_samples,)
Transformed data.
"""
return self.transform(T)
def __getstate__(self):
"""Pickle-protocol - return state of the estimator. """
# copy __dict__
state = dict(self.__dict__)
# remove interpolation method
state.pop('f_', None)
return state
def __setstate__(self, state):
"""Pickle-protocol - set state of the estimator.
We need to rebuild the interpolation function.
"""
self.__dict__.update(state)
self._build_f(self.X_, self.y_)