Caution
|
FIXME |
Column
type represents…FIXME
Caution
|
FIXME |
scala> df("id") like "0"
res0: org.apache.spark.sql.Column = id LIKE 0
scala> df.filter('id like "0").show
+---+-----+
| id| text|
+---+-----+
| 0|hello|
+---+-----+
scala> val df = Seq((0, "hello"), (1, "world")).toDF("id", "text")
df: org.apache.spark.sql.DataFrame = [id: int, text: string]
scala> df.select('id)
res0: org.apache.spark.sql.DataFrame = [id: int]
scala> df.select('id).show
+---+
| id|
+---+
| 0|
| 1|
+---+
over(window: expressions.WindowSpec): Column
over
function defines a windowing column that allows for window computations to be applied to a window. Window functions are defined using WindowSpec.
Tip
|
Read about Windows in Windows. |
cast
method casts a column to a data type. It makes for type-safe maps with Row objects of the proper type (not Any
).
cast(to: String): Column
cast(to: DataType): Column
It uses CatalystSqlParser to parse the data type from its canonical string representation.
scala> val df = Seq((0f, "hello")).toDF("label", "text")
df: org.apache.spark.sql.DataFrame = [label: float, text: string]
scala> df.printSchema
root
|-- label: float (nullable = false)
|-- text: string (nullable = true)
// without cast
import org.apache.spark.sql.Row
scala> df.select("label").map { case Row(label) => label.getClass.getName }.show(false)
+---------------+
|value |
+---------------+
|java.lang.Float|
+---------------+
// with cast
import org.apache.spark.sql.types.DoubleType
scala> df.select(col("label").cast(DoubleType)).map { case Row(label) => label.getClass.getName }.show(false)
+----------------+
|value |
+----------------+
|java.lang.Double|
+----------------+