Skip to content

halfdeb/Tuberculosis-Detection-Using-CNN-

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 

Repository files navigation

Tuberculosis Detection Project 📊

Overview 👀

Welcome to the Tuberculosis Detection Project! In this project, the aim is to develop a machine learning model to detect tuberculosis (TB) from chest X-ray images. The dataset consists of chest X-ray images from individuals diagnosed with TB and those without TB.

Dataset 📦

The dataset comprises chest X-ray images categorized into two classes: normal and tuberculosis cases. It includes a total of several thousand images, with labels indicating the presence or absence of TB.

Analysis Objective 🎯

The primary objective is to build a robust machine learning model capable of accurately identifying TB cases from chest X-ray images. Such a model could assist healthcare professionals in early diagnosis and treatment of tuberculosis, thereby potentially reducing its spread and improving patient outcomes.

Evaluation Metrics 📏

The evaluation of the model is based on metrics such as accuracy, F1 score, and the confusion matrix. These metrics provide insights into the model's performance in correctly classifying TB and non-TB cases, as well as its ability to minimize false positives and false negatives.

Readme Note 📝

This project addresses the critical task of tuberculosis detection using machine learning techniques applied to medical imaging data. By leveraging deep learning and image processing methods, the model aims to contribute to the improvement of TB diagnosis, particularly in resource-constrained settings. Let's work towards enhancing tuberculosis detection and healthcare outcomes together! 🩺🔍

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published