-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWWVB.cpp
543 lines (429 loc) · 19.9 KB
/
WWVB.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
// WWVB.cpp WWVB decoding experiments
//
// Experiment comparing received with calculated bits to check error rates
#include <windows.h>
#include <conio.h>
#include <stdio.h>
#include <math.h>
#include <time.h>
#include <corecrt_share.h>
#include "waveIn.h"
#include "Brymen.h"
#define AudDeviceName "Realtek High Def"
// #define START_AT_HOUR 1
double clockOffSeconds = 0.034; // check with https://nist.time.gov/ "Your clock is off by: ____" or USE_NTP
// TODO: Why does buffer ready callback time fall behind by more than (0.5 sample / 192000 samples/sec = 2.6 us) * 60 sec = 156us / minute ??? *****
// TODO: Use 3 one second buffers, circular; wait so any slice crossing buffer boundary is fully ready
// TODO: auto-sync start of seconds, minutes: initial sync words search
// see AM decoding at https://github.com/jepler/cwwvb
// PCM phase inversions happen at low power so poor way to set bit timing
// TODO: auto-adjust SamplingOffset_ms and SampleHz based on WWVB amplitude and phase offsets
// TODO: port to small MCU with precise 240 kHz ADC sampling so sin and cos values are only -1,0,+1
const int MaxPhaseAvgCount = 8; // TODO: adjust phase servo gain for best tracking, lock in, and noise rejection
// gain is reduced by noise squelch
// optimum depends on phase noise and drift (ionosphere bounce height), accuracy of SampleHz, ...
// Beware phase shift push/pull from ~60Hz odd harmonics as they drift through
// Squelch phase servo gain when ~60 Hz * N (999 or 1001) ~ 60 kHz
// correlate errors with line Hz = WWVBHz / 1001 = 59.94 Hz or / 999 = 60.06 Hz
const int SamplingOffset_ms = -1000/4 + 170; // to center sample buffer on 2nd half of bit time (want slice3StartSample ~ bufferSamples / 4)
const int StrongSignalSeconds = 60 - 6 - 1; // markers at second == 0 and % 10 == 9
const int MaxOffsetAvgCount = StrongSignalSeconds; // decaying average over reporting minute
// TODO: Try I Q (I V ?) separation into more common 48kHz stereo sampling (Note many mic inputs are mono, so amplify for line inputs)
const int WWVBHz = 60000;
char frameType = 't'; // sync, time, extended, fixed, message
signed char frameBits[60];
// 001110110m000 time sync
// 110100011m010 message sync
void setMinutesInCentury() {
frameType = 't';
const signed char timeSync[] = { -1, 0, 1, 1, 1, 0, 1, 1, 0, -1, 0, 0, 0};
memcpy(frameBits, timeSync, sizeof timeSync); // could also be message
/*
time_par[0] = sum(modulo 2){time[ 23, 21, 20, 17,16, 15,14,13, 9, 8, 6, 5, 4, 2, 0]}
time_par[1] = sum(modulo 2){time[ 24, 22,21, 18,17,16, 15,14, 10, 9, 7, 6, 5, 3, 1 ]}
time_par[2] = sum(modulo 2){time[25, 23,22, 19,18,17,16, 15, 11,10, 8, 7, 6, 4, 2 ]}
time_par[3] = sum(modulo 2){time[ 24, 21, 19,18, 15,14,13,12, 11, 7, 6, 4, 3, 2, 0]}
time_par[4] = sum(modulo 2){time[25, 22, 20, 19, 16, 15,14,13,12, 8, 7, 5, 4, 3, 1 ]
*/
int parVector[5] = {0xB3E375, 0x167C6EA, 0x2CF8DD4, 0x12CF8DD, 0x259F1BA};
char time_par[5] = {0};
unsigned int minute = (unsigned int)(time(NULL) / 60 - 15778080); // in this century
int bit = 0;
for (int sec = 46; sec >= 18; --sec) { // 26 + 3 marker rcvdBits
if (sec % 10 == 9) continue; // marker
frameBits[sec] = minute & 1;
if (minute & 1)
for (int par = 0; par < 5; ++par)
if (parVector[par] & (1 << bit))
time_par[par] ^= 1;
minute >>= 1;
++bit;
}
for (int par = 0; par < 5; ++par)
frameBits[17 - par] = time_par[par];
const signed char dst[13] = {-1,-1, 0, -1, 1, 1,-1, 1, 1,-1, 1, 1, 0,}; // no leap second, summer DST
memcpy(frameBits + 47, dst, sizeof dst);
}
void setFixedBits(bool minuteX2) {
frameType = 'f';
const signed char FixedTimingWord[6 * 60 - 2 * 127] = {
1, 1, 0, 1, 0, 0, 0, 1, 1, 1,
0, 1, 0, 1, 1, 0, 0, 1, 0, 1,
1, 0, 0, 1, 1, 0, 1, 1, 1, 0,
0, 0, 1, 1, 0, 0, 0, 0, 1, 0,
1, 1, 0, 1, 0, 0, 1, 1, 1, 0,
1, 0, 0, 1, 0, 1, 0, 1, 0, 0,
0, 0, 1, 0, 1, 1, 1, 0, 0, 0,
1, 0, 1, 1, 0, 1, 0, 1, 1, 0,
1, 1, 0, 1, 1, 1, 1, 1, 1, 1,
1, 0, 0, 0, 0, 0, 0, 1, 0, 0,
1, 0, 0, 1, 0, 0,
};
const int FixedBitsInMinute = sizeof(FixedTimingWord) / 2;
memcpy(frameBits + (minuteX2 ? 60 - FixedBitsInMinute : 0), FixedTimingWord + (minuteX2 ? 0 : FixedBitsInMinute), FixedBitsInMinute);
}
DWORD64 reverse(DWORD64 x) {
x = ((x >> 1) & 0x5555555555555555) | ((x & 0x5555555555555555) << 1); // swap odd and even bits
x = ((x >> 2) & 0x3333333333333333) | ((x & 0x3333333333333333) << 2); // swap pairs
x = ((x >> 4) & 0x0f0f0f0f0f0f0f0f) | ((x & 0x0f0f0f0f0f0f0f0f) << 4); // swap nibbles
x = ((x >> 8) & 0x00ff00ff00ff00ff) | ((x & 0x00ff00ff00ff00ff) << 8); // swap bytes
x = ((x >> 16) & 0x0000ffff0000ffff) | ((x & 0x0000ffff0000ffff) << 16); // swap words
x = ((x >> 32) & 0x00000000ffffffff) | ((x & 0x00000000ffffffff) << 32); // swap dwords
return x;
}
void setExtendedBits(int hourUTC, int minute, int DST = 1) {
frameType = 'x';
const DWORD64 Seq1Bits[2] = { // better __uint128_t
0b1111111001101101010100010010011001111000111011101011110100101100,
0b101001110010001100010111000010000110100000111110110000001010110
}; // 127 bits
// ShiftLeft128()
const signed char Seq1[127 + 60 - 1] = { // LFSR x^7 + x^6 + x^5 + x^2 + 1
1,1,1,1,1,1,1,0,0,1,1,0,1,1,0,1,0,1,0,1,0,0,0,1,0,0,1,0,0,1,1,0,0,1,1,1,1,0,0,0,1,1,1,
0,1,1,1,0,1,0,1,1,1,1,0,1,0,0,1,0,1,1,0,0,1,0,1,0,0,1,1,1,0,0,1,0,0,0,1,1,0,0,0,1,0,1,
1,1,0,0,0,0,1,0,0,0,0,1,1,0,1,0,0,0,0,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0,1,0,1,1,0,
1,1,1,1,1,1,1,0,0,1,1,0,1,1,0,1,0,1,0,1,0,0,0,1,0,0,1,0,0,1,1,0,0,1,1,1,1,0,0,0,1,1,1,
0,1,1,1,0,1,0,1,1,1,1,0,1,0,0,1,
};
int leftShifts = hourUTC * 4 + minute / 16 + DST; // 127 bit circular shifts max 96
switch (minute % 30) {
case 10 : memcpy(frameBits, Seq1 + leftShifts, 60); break;
case 11 : memcpy(frameBits, Seq1 + (leftShifts + 60) % 127, 60); break;
case 12 :
setFixedBits(true);
memcpy(frameBits, Seq1 + (leftShifts + 120) % 127, 7);
break;
// extended bits are reverse ordered in minutes 13..15, 43..45
case 13:
setFixedBits(false);
for (int p = 7; p--;) frameBits[60 - 1 - p] = Seq1[(p + leftShifts + 120) % 127];
break;
case 14: for (int p = 60; p--;) frameBits[60 - 1 - p] = Seq1[(p + leftShifts + 60) % 127]; break;
case 15: for (int p = 60; p--;) frameBits[60 - 1 - p] = Seq1[ p + leftShifts ]; break;
}
}
const double PI = 3.141592653589793238463;
const double TwoPI = 2 * PI;
double normalize(double phase) {
return fmod(phase + TwoPI + PI, TwoPI) - PI; // -PI..PI
}
DWORD64 rcvdBits; // one minute: 60 - 7 non-marker bits
int second;
double avgPhaseOffset, lastCorrection;
double cleanPhaseOffsetTotal;
double cleanPhaseOffsetCount;
FILE* fLog;
void printfLog(const char* format, ...) {
va_list args; va_start(args, format);
static char line[256];
static int linePos;
int start = linePos;
linePos += vsprintf_s(line + linePos, sizeof line - linePos, format, args);
va_end(args);
printf("%s", line + start);
if (line[linePos - 1] == '\n') {
if (!fLog) fLog = _fsopen("logAll.txt", "ab", _SH_DENYNO);
if (fLog) fwrite(line, 1, linePos, fLog);
linePos = 0;
// fflush(fLog);
}
}
int errCount;
typedef struct {
double mag, ph; // magnitude, phase
} MagPhase;
double lineHzInterfere;
void adjustPhase(double& phase, double magOffsetDifference, double phaseDifference) {
// ?? better PID servo to handle short and long-term drifts vs. noise?
double bitPhase = normalize(phase - avgPhaseOffset); // should be near 0 or +/-PI
double phaseOfs = fmod(bitPhase + TwoPI + PI/2, PI) - PI/2; // -PI/2..PI/2, independent of phase inversion
static int phaseAvgCount = 1;
// reduce phase servo gain when 0.25s slices amplitudes and/or phases don't match:
// typical noise-free phase difference: <= 4 degrees; squelch phase servo gain above that
double noiseSquelch = (1 - fabs(magOffsetDifference)) * (1 - min(pow(phaseDifference / PI * phaseAvgCount, 2), 1)); // TODO: adjust
avgPhaseOffset += lastCorrection = phaseOfs / phaseAvgCount * noiseSquelch;
if (phaseAvgCount < MaxPhaseAvgCount) ++phaseAvgCount;
cleanPhaseOffsetTotal += phaseOfs * noiseSquelch; // per second; ? marker bias?
cleanPhaseOffsetCount += noiseSquelch;
bool phaseInverted = fabs(normalize(phase - avgPhaseOffset)) >= PI/2;
int bit = phaseInverted ? 1 : 0;
int syncBit = frameBits[second];
if (frameType != 'm' && syncBit >= 0 && bit != syncBit) { // check known bits
printfLog("%c", bit ? 'o' : '!'); // miscompare
++errCount;
} else printfLog("%d", bit);
rcvdBits <<= 1;
rcvdBits |= bit;
}
int bitCount(DWORD64 bits) {
int count = 0;
while (bits) {
count += ((bits & 3) + 1) / 2;
bits >>= 2;
}
return count;
}
static SYSTEMTIME systemTime;
void checkFrameType() {
int syncBitsMatched;
if (frameType == 'x' || frameType == 'f') {
int firstBits = 0;
for (int b = 1; b <= 12; ++b) {
if (b == 9) continue; // marker
firstBits <<= 1;
firstBits |= frameBits[b];
}
syncBitsMatched = 11 - 2 * bitCount(rcvdBits ^ firstBits);
} else { // could be time or message (unlikely)
const int TimeSync = 0b01110110000; // 01110110m000 time sync, inverted: 10001001m111
const int MsgSync = 0b10100011010; // 10100011m010 message sync, inverted: 01011100m101
int timeSyncBitsMatched = 11 - 2 * bitCount(rcvdBits ^ TimeSync); // inverted match -11..11 all matched
int msgSyncBitsMatched = 11 - 2 * bitCount(rcvdBits ^ MsgSync);
// rcvdBits matched is negative when phase is inverted
// choose best match, including inverted phase -- most likely time
frameType = abs(timeSyncBitsMatched) >= abs(msgSyncBitsMatched) ? 't' : 'm';
syncBitsMatched = frameType == 't' ? timeSyncBitsMatched : msgSyncBitsMatched;
}
if (syncBitsMatched <= -7) // sync word phase very likely inverted -- should be rare except when noisy
avgPhaseOffset += PI; // invert phase
printfLog("%+d%c", syncBitsMatched - syncBitsMatched / 4, frameType); // scaled to single digit -9..9
}
MagPhase processSlice(int startSample, int endSample, short* buf, double freq = WWVBHz) {
double i = 0, q = 0;
for (int s = startSample; s < endSample; ++s) {
double theta = TwoPI * freq / SampleHz;
i += cos(s * theta) * buf[s];
q += sin(s * theta) * buf[s];
}
return MagPhase {sqrt(pow(i, 2) + pow(q, 2)) / 48, atan2(i, q)}; // -PI..PI
}
void setExpectedBits() {
GetSystemTime(&systemTime);
if ((systemTime.wMinute % 30 + 2) / 6 == 2)
setExtendedBits(systemTime.wHour, systemTime.wMinute);
else setMinutesInCentury();
}
double bufferStartSeconds;
int bufferSamples;
FILE* fMagPh;
bool needResynch;
int lastCallbackMillisec;
double lineHz = 60;
void processBuffer(short* wavInBuf) {
static double avgMag = 100, avgMagOfs, avgPhaseDifference;
static long long sumSquares;
second = int(fmod(bufferStartSeconds + 0.5, 60));
if (second == 0) {
printfLog("\n");
rcvdBits = 0;
setExpectedBits();
if (lastCallbackMillisec >= 0 && abs((systemTime.wMilliseconds - lastCallbackMillisec + 1000 + 500) % 1000 - 500) > 25) { // audio gap -- resync by difference
bufferStartSeconds += ((systemTime.wMilliseconds - lastCallbackMillisec + 1000) % 1000) / 1000.;
printf("\n"); // gap
}
lastCallbackMillisec = systemTime.wMilliseconds;
// will change by up to +/- 0.5 sample * 60 seconds / 192000 = 0.16 ms / minute = +/- 2.6ppm
// plus system clock off by ?? ppm
// --> need circular audio buffer or slightly variable bufferSamples to keep centered
printfLog("%2d:%02d:%02d.%03d ", systemTime.wHour, systemTime.wMinute, systemTime.wSecond, systemTime.wMilliseconds);
printfLog("%+4.0fms ", avgMagOfs * 500);
if (systemTime.wSecond > second + 2) { // multi-second audio gap
printf("j");
needResynch = true;
return;
}
}
static double worstLineHarmonics;
static int worstSecond;
if (lineHz < MinErrVal) {
double lineHarmonicAlignment = fabs(fmod(lineHz * 1001 - WWVBHz + 240, 120) - 60);
if (lineHarmonicAlignment > worstLineHarmonics) {
worstLineHarmonics = lineHarmonicAlignment; // bad interference at 0, ~ +/- N * 120
worstSecond = second;
}
}
if (second % 60 == 0 || second % 10 == 9) { // marker second -- low signal
printfLog("%c", frameType);
avgPhaseOffset += lastCorrection;
if (second == 59) {
if (errCount > StrongSignalSeconds / 2) errCount = StrongSignalSeconds - errCount; // mostly inverted
printfLog(" %2d", errCount);
if (errCount > 16 && fabs(avgMagOfs) > 0.2) // beware startup
needResynch = true;
errCount = 0;
printf("%3.0f", 10 * log10(lineHzInterfere) + 10); // Noise / Signal
lineHzInterfere = 0;
printfLog("%3.0f", 10 * log10((double)sumSquares / StrongSignalSeconds) - 20 * log10(avgMag)); // Noise / Signal
sumSquares = 0;
printfLog("%2.0f", 10 * worstLineHarmonics / 60);
// printfLog(" %2d", worstSecond);
worstLineHarmonics = 0;
printfLog("%+5.1f", avgPhaseDifference * 180 / PI); // degrees
}
return; // don't process low signal marker seconds
}
for (int s = 0; s < bufferSamples; ++s)
sumSquares += (int)wavInBuf[s] * wavInBuf[s];
// process last half of bit time where amplitude is always high
int slice3StartSample = (int)round(fmod((bufferStartSeconds + 0.5) * SampleHz, bufferSamples)); // ~ bufferSamples / 4
int slice3EndSample = slice3StartSample + bufferSamples / 4;
int slice4EndSample = slice3EndSample + bufferSamples / 4;
if (slice4EndSample > bufferSamples) {
if (slice4EndSample >= bufferSamples * 17 / 16) { // off end by 1/4 of 1/4 buffer slice = 62.5 ms + 250 ms / 0.156ms = (as often as every 33 minutes)
// TODO: better circular audio buffer feeding slices when ready
needResynch = true;
printf("S");
return;
}
slice4EndSample = bufferSamples;
}
MagPhase slice3 = processSlice(slice3StartSample, slice3EndSample, wavInBuf); // bit start + 0.5..0.75s
MagPhase slice4 = processSlice(slice3EndSample, slice4EndSample, wavInBuf); // bit start + 0.75..1.0s
double totalMag = slice3.mag + slice4.mag;
// overlap when lineHz * 1000 +/- odd N = WWVBHz; lineHz = WWVBHz / 1001 = 59.94Hz
// measure next odd harmonic: lineHz * 1003 = WWVBHz * 1003 / 1001
lineHzInterfere = max(processSlice(0, bufferSamples, wavInBuf, 1003 * WWVBHz / 1001.).mag / totalMag, lineHzInterfere);
// positive deviation harmonics almost same: 1001 / 999 ~ 1003 / 1001 within 4ppm
// also 120 Hz * 500 +/- odd N = WWVBHz lineHz = 59.88 Hz (rare - 2 sigma?)
// lineHzInterfere = max(processSlice(0, bufferSamples, wavInBuf[b], WWVBHz * 503 / 501.).mag / totalMag, lineHzInterfere); // 120 Hz rarer
// TODO: more squelch when line Hz odd overtones coincide
static int offsetAvgCount = 1;
double magOffset = (slice4.mag - slice3.mag) / totalMag; // 0 if no noise, centered on slices
avgMagOfs += (magOffset - avgMagOfs) / offsetAvgCount;
// TODO: servo avgMagOfs toward 0 vs. clock drift
avgMag += (totalMag - avgMag) / offsetAvgCount;
// also show deviation = noise
double phaseDifference = normalize(slice4.ph - slice3.ph); // 0 if no short-term phase noise/drift
avgPhaseDifference += normalize(phaseDifference - avgPhaseDifference) / offsetAvgCount;
avgPhaseDifference = normalize(avgPhaseDifference);
if (offsetAvgCount < MaxOffsetAvgCount) ++ offsetAvgCount;
if (systemTime.wYear) { // after systemTime set at first second == 0
unsigned short hms = systemTime.wHour << 12 | systemTime.wMinute << 6 | systemTime.wSecond; // 4 + 6 + 6 rcvdBits
short tMagPh[5] = {(short)hms, (short)(slice3.mag / 100), (short)(slice3.ph * 180 / PI),
(short)(slice4.mag / 100), (short)(slice4.ph * 180 / PI)};
fwrite(tMagPh, sizeof tMagPh, 1, fMagPh);
}
double q3PhaseOfs = normalize(TwoPI * WWVBHz * (bufferStartSeconds + slice3StartSample / SampleHz));
double phase = normalize((slice3.ph + slice4.ph) / 2 - q3PhaseOfs);
adjustPhase(phase, magOffset - avgMagOfs, phaseDifference);
if (second == 12 && systemTime.wYear) // sync bits received
checkFrameType();
avgPhaseOffset = normalize(avgPhaseOffset);
}
void audioReadyCallback(WAVEHDR* wh) {
if (wh->dwBytesRecorded == wh->dwBufferLength) {
bufferSamples = wh->dwBytesRecorded / sizeof(short);
processBuffer((short*)wh->lpData);
} else {
printf("b");
avgPhaseOffset += lastCorrection;
}
bufferStartSeconds += bufferSamples / SampleHz; // next buffer start time
// TODO: samples might be discontinuous -- check for sudden jump in avgMagOffset and resync
// TODO: treat audio buffers as circular and/or adjust BufferSmaples to stay centered
}
void alignOutput() {
printf("\n UTC Align ");
int secondPos = int(fmod(bufferStartSeconds + 0.5, 60));
if (secondPos >= 12) secondPos += 3; // header check
const char Rcvd[] = "Received ";
if (secondPos >= strlen(Rcvd))
secondPos -= printf(Rcvd);
for (int i = 0; i < secondPos; ++i) printf(" ");
}
void startAudioIn(bool useNTP = false) {
double ntp = 0;
// TODO: once, then use system time and clockOffSeconds
extern double ntpTime();
if (useNTP)
ntp = ntpTime();
SYSTEMTIME nearNTP_time; GetSystemTime(&nearNTP_time);
double stNtp = nearNTP_time.wSecond + nearNTP_time.wMilliseconds / 1000.;
if (ntp == 0) // use system time
ntp = stNtp - clockOffSeconds;
int ms = (int)(fmod(ntp + 1, 1) * 1000);
int sleep_ms = 2000 - ms + SamplingOffset_ms;
Sleep(sleep_ms); // start near 1 second boundary
startWaveIn(); // consistent phase
SYSTEMTIME wavInStartTime; GetSystemTime(&wavInStartTime);
double stWis = wavInStartTime.wSecond + wavInStartTime.wMilliseconds / 1000.;
lastCallbackMillisec = -1;
bufferStartSeconds = fmod(ntp + stWis - stNtp, 60); // approx recording start time
clockOffSeconds = fmod(stNtp - fmod(ntp, 60) + 60 + 30, 60) - 30; // -: CPU behind
printf("\n%.3fs (PC clock off %+.3fs)", bufferStartSeconds, clockOffSeconds);
alignOutput();
setExpectedBits();
}
int main() {
openBrymen();
requestReading();
#ifdef START_AT_HOUR // PDT: delayed clean night higher SNR start
const int SecsPerHour = 60 * 60;
const int SecsPerDay = 24 * 60 * 60;
int secsUntilStart = ((START_AT_HOUR + 7) * SecsPerHour - time(NULL) % SecsPerDay + SecsPerDay) % SecsPerDay;
Sleep(1000 * secsUntilStart);
#endif
fMagPh = _fsopen("magPhs.bin", "wb", _SH_DENYNO);
setupAudioIn(AudDeviceName, &audioReadyCallback);
startAudioIn();
while (1) {
if (_kbhit()) switch (_getch()) {
case 'f' : {
double avgPhaseOffsetPerSec = cleanPhaseOffsetTotal / cleanPhaseOffsetCount;
double avgCyclesPerSecOffset = avgPhaseOffsetPerSec / TwoPI; // cycles of WWVBHz per second
double secsPerSecError = avgCyclesPerSecOffset / WWVBHz;
double avgSampleHzError = secsPerSecError * SampleHz;
printf("\nSampleHz off by: %+.4f Hz, should be: %.6f", avgSampleHzError, SampleHz + 2 * avgSampleHzError); // TODO: check calc by changing SampleHz ***
// full run average, so SampleHzError * 2 to compare with 1PPS change from last check
cleanPhaseOffsetTotal = cleanPhaseOffsetCount = 0; // * 2 not valid for later 'f'
alignOutput();
}
break;
case 'n' :
stopWaveIn();
startAudioIn(true);
break;
case 'r' : needResynch = true; break;
case 's' : // stop
printf("\nstop\n");
if (fMagPh) fclose(fMagPh);
if (fLog) fclose(fLog);
stopWaveIn();
closeBrymen();
exit(0);
}
if (needResynch) {
needResynch = false;
stopWaveIn();
startAudioIn();
} else {
#if 1
requestReading();
Sleep(300); // 5 readings per sec
lineHz = fastGetReading();
#endif
Sleep(500);
}
}
return 0;
}