-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfuzzyWorker.py
208 lines (197 loc) · 9.45 KB
/
fuzzyWorker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
"""
/***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
***************************************************************************/
"""
import os
import re
from qgis.PyQt.QtCore import QObject, pyqtSignal
from qgis.core import QgsCoordinateTransform, QgsCoordinateReferenceSystem, QgsProject, QgsVectorLayer, QgsFeatureRequest, QgsStringUtils
import traceback
class FuzzyWorker(QObject):
'''This does all the hard work. It takes all the search parameters and
searches through the vector layers for a match.'''
finished = pyqtSignal(bool)
error = pyqtSignal(str)
foundmatch = pyqtSignal(QgsVectorLayer, object, object, str, object, str)
def __init__(self, canvas, vlayers, infield, searchStr, algorithm, case_sensitive,
fuzzy_contains, selectedField, maxResults, first_match_only,
search_selected, match_metric, constrain_to_canvas):
QObject.__init__(self)
self.canvas = canvas
self.vlayers = vlayers
self.infield = infield
self.searchStr = searchStr
self.algorithm = algorithm
self.case_sensitive = case_sensitive
self.selectedField = selectedField
self.killed = False
self.maxResults = maxResults
self.first_match_only = first_match_only
self.search_selected = search_selected
self.fuzzy_contains = fuzzy_contains
self.match_metric = match_metric
self.constrain_to_canvas = constrain_to_canvas
self.epsg4326 = QgsCoordinateReferenceSystem('EPSG:4326')
def run(self):
'''Worker Run routine'''
self.found = 0
try:
# Check to see if we are searching within a particular column of a specified
# layer or whether we are searching all columns.
if self.infield is True:
for layer in self.vlayers:
self.searchFieldInLayer(layer, self.selectedField)
else:
for layer in self.vlayers:
self.searchLayer(layer)
except:
self.error.emit(traceback.format_exc())
pass
self.finished.emit(True)
def kill(self):
'''Set a flag that we want to stop looking for matches.'''
self.killed = True
def canvasExtent(self, layer):
canvas_crs = self.canvas.mapSettings().destinationCrs()
# We need to make sure the canvas extent is within its CRS bounds
extent = self.canvas.extent() # This is returned as EPSG:4326
epsg4326_to_canvas = QgsCoordinateTransform(self.epsg4326, canvas_crs, QgsProject.instance())
legal_bounds = epsg4326_to_canvas.transform(canvas_crs.bounds())
extent = legal_bounds.intersect(extent)
# transform the extent to the layer's crs
layer_crs = layer.crs()
trans = QgsCoordinateTransform(canvas_crs, layer_crs, QgsProject.instance())
textent = trans.transform(extent)
return(textent)
def searchLayer(self, layer):
'''Do a string search across all columns in a table'''
if self.killed:
return
# Check for contraints
if self.constrain_to_canvas and layer.isSpatial():
extent = self.canvasExtent(layer)
request = QgsFeatureRequest(extent)
else:
request = QgsFeatureRequest()
fnames = []
# Get and Keep a copy of the field names
for field in layer.fields():
fnames.append(field.name())
# Get an iterator for all the features in the vector
if self.search_selected:
if layer.selectedFeatureCount() == 0:
return
iter = layer.getSelectedFeatures(request)
else:
iter = layer.getFeatures(request)
search_str_len = len(self.searchStr)
'''self.error.emit('algorithm: {}'.format(self.algorithm))
self.error.emit('searchStr: {}'.format(self.searchStr))
self.error.emit('case_sensitive: {}'.format(self.case_sensitive))
self.error.emit('fuzzy_contains: {}'.format(self.fuzzy_contains))
self.error.emit('match_metric: {}'.format(self.match_metric))'''
if self.algorithm == 1:
search_str_soundex = QgsStringUtils.soundex(self.searchStr)
for feature in iter:
# Check to see if it has been aborted
if self.killed is True:
return
attrs = feature.attributes()
# For now just search as if it were a string
for id, f in enumerate(attrs):
try:
s = str(f)
if self.algorithm == 0:
dist = QgsStringUtils.levenshteinDistance(self.searchStr, s, self.case_sensitive)
flen = len(s)
# self.error.emit('dist {}, flen {}'.format(dist, flen))
if flen <= search_str_len:
score = 1.0 - dist / search_str_len
else:
if self.fuzzy_contains:
dist = dist - flen + search_str_len
# self.error.emit('in fuzzy dist {}, flen {}, search_str_len {}'.format(dist, flen, search_str_len))
score = 1.0 - dist / search_str_len
else:
score = 1.0 - dist / flen
# self.error.emit('{} - {} - {}'.format(id, s, score))
if score >= self.match_metric:
self.foundmatch.emit(layer, feature, fnames[id], str(f), None, None)
self.found += 1
if self.found >= self.maxResults:
self.killed=True
return
if self.first_match_only:
break
else:
soundex = QgsStringUtils.soundex(s)
if soundex == search_str_soundex:
self.foundmatch.emit(layer, feature, fnames[id], str(f), None, None)
self.found += 1
if self.found >= self.maxResults:
self.killed=True
return
if self.first_match_only:
break
except:
# self.error.emit(traceback.format_exc())
pass
def searchFieldInLayer(self, layer, selectedField):
'''Do a string search on a specific column in the table.'''
if self.killed:
return
search_str_len = len(self.searchStr)
if self.constrain_to_canvas and layer.isSpatial():
extent = self.canvasExtent(layer)
request = QgsFeatureRequest(extent)
else:
request = QgsFeatureRequest()
# self.error.emit('searchFieldInLayer')
# request.setSubsetOfAttributes([selectedField], layer.fields())
if self.search_selected:
iter = layer.getSelectedFeatures(request)
else:
iter = layer.getFeatures(request)
for feature in iter:
# Check to see if it has been aborted
if self.killed is True:
return
try:
f = feature.attribute(selectedField)
s = str(f)
if self.algorithm == 0:
dist = QgsStringUtils.levenshteinDistance(self.searchStr, s, self.case_sensitive)
flen = len(s)
# self.error.emit('dist {}, flen {}'.format(dist, flen))
if flen <= search_str_len:
score = 1.0 - dist / search_str_len
else:
if self.fuzzy_contains:
dist = dist - flen + search_str_len
# self.error.emit('in fuzzy dist {}, flen {}, search_str_len {}'.format(dist, flen, search_str_len))
score = 1.0 - dist / search_str_len
else:
score = 1.0 - dist / flen
# self.error.emit('{} - {} - {}'.format(id, s, score))
if score >= self.match_metric:
self.foundmatch.emit(layer, feature, selectedField, s, None, None)
self.found += 1
if self.found >= self.maxResults:
self.killed=True
return
else:
soundex = QgsStringUtils.soundex(s)
if soundex == search_str_soundex:
self.foundmatch.emit(layer, feature, selectedField, str(f), None, None)
self.found += 1
if self.found >= self.maxResults:
self.killed=True
return
except:
pass