forked from A7mad7sn/Loan-Prediction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSVM.py
38 lines (26 loc) · 997 Bytes
/
SVM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
#impoting Libraries :-
from sklearn.svm import SVC
from sklearn import metrics
def SVM_Algorithm(Data):
print ('Using SVM :-')
print ('-------------')
#Data Splitting :-
x_train, x_test, y_train, y_test = Data
#Data Training :-
loan_model_svm = SVC(kernel = 'linear')
loan_model_svm.fit(x_train,y_train)
#Prediction for printing accuracy :-
y_predict = loan_model_svm.predict(x_test)
print('SVM accuracy for Loan Prediction = ',metrics.accuracy_score(y_predict,y_test))
print("Y_Predicted : ",y_predict)
def SVM_Predictor(Data,features):
print ('Using SVM :-')
print ('-------------')
#Data Splitting :-
x_train, x_test, y_train, y_test = Data
#Data Training :-
loan_model = SVC(kernel = 'linear')
loan_model.fit(x_train,y_train)
#Prediction for features :-
predicted_val = loan_model.predict(features)
print("Prediction for loan : ",predicted_val)