-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
91 lines (80 loc) · 3.11 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import jax
import jax.numpy as jnp
import flax
from flax.training import train_state
from typing import Any, Callable, Dict, List, Optional, Tuple, Sequence
from simulation import DataLoader
@jax.jit
def loss_fn(state: train_state.TrainState,
params: jnp.ndarray,
traits: jnp.ndarray,
distance: jnp.ndarray,
receivers: jnp.ndarray,
senders: jnp.ndarray,
vcs: jnp.ndarray,
nodes_padding: jnp.ndarray,
edges_padding: jnp.ndarray):
vcs_hat = state.apply_fn(params,
traits,
distance,
receivers,
senders,
nodes_padding,
edges_padding)
error_sum_squared = jnp.mean(jnp.power(vcs - vcs_hat, 2), axis=0).mean()
return error_sum_squared
@jax.jit
def train_step(state: train_state.TrainState,
traits: jnp.ndarray,
distance: jnp.ndarray,
receivers: jnp.ndarray,
senders: jnp.ndarray,
vcs: jnp.ndarray,
nodes_padding: jnp.ndarray,
edges_padding: jnp.ndarray):
grad_fn = jax.value_and_grad(loss_fn, argnums=1)
loss, grads = grad_fn(state,
state.params,
traits,
distance,
receivers,
senders,
vcs,
nodes_padding,
edges_padding)
state = state.apply_gradients(grads=grads)
return state, loss
class TrainOnTheFly:
def __init__(self,
state: train_state.TrainState,
distance: jnp.ndarray,
receivers: jnp.ndarray,
senders: jnp.ndarray):
self.state = state
self.distance = distance
self.receivers = receivers
self.senders = senders
self.optimization_trajectory = []
def train(self,
data_loader: DataLoader,
num_refresh: int = 100,
num_epochs: int = 2000,
verbose: bool = False,
callback: bool = True):
traits, vcs, _, nodes_padding, edges_padding = next(data_loader)
for epoch in range(num_epochs):
state, loss_val = train_step(self.state,
traits,
self.distance,
self.receivers,
self.senders,
vcs,
nodes_padding,
edges_padding)
if epoch % num_refresh == 0:
traits, vcs, _, nodes_padding, edges_padding = next(data_loader)
if epoch % num_refresh == 1:
if verbose:
print('Epoch: %d, Loss: %.8f' % (epoch, loss_val))
self.optimization_trajectory.append(loss_val)
self.state = state