Skip to content

Latest commit

 

History

History
76 lines (61 loc) · 2.89 KB

Sketch ofD&A8.md

File metadata and controls

76 lines (61 loc) · 2.89 KB

##拟合问题 -《科学计算导论》3.1-3.4、3.5.1《数值方法与计算机实现》6.2.1、6.2.4、2.5.3 拟合问题的一般形式 给定m 个数据点(xi,yi),假设x 和y 满足y = f(t,x),t 为参数向量找到最佳的参数向量t,使得代价函数: min(t) Σ[yi-f(t,xi)]2
###超定方程与欠定方程 给定线性方程组Ax = b,其系数矩阵A 为m×n 维,我们已经讨论了m = n 时的求解问题

如果m > n:方程的数目多于未知数的数目,称为超定方程
如果m < n:方程的数目少于未知数的数目,称为欠定方程

最小二乘
若系数矩阵A 的各列线性独立,即rand (A) = n,则解是唯一的
若系数矩阵A 欠秩,即rand (A) < n,则解是不唯一的

正规方程
用Cholesky 分解法求解

复杂度:
方程变换:主要是矩阵相乘,复杂度约为(mn^2)/2
Cholesky 分解法:复杂度约为n^3/6
正规方程方法可能会导致敏感性的恶化

QR 分解
对于m×n 的矩阵A,寻找一个m×m 的正交变换阵Q,使得

通过一组Householder 变换,实现了对系数矩阵的QR 分解
详细请看求解举例,过程较为繁琐,不一一列举。
由乘法次数考察基于Householder 变换的QR 分解复杂度
对于m×n 的系数矩阵,需要引入n 个Householder 变换阵 对一个列矢量进行Householder 变换,需进行的乘法为2 (m-i)
总的乘法次数为

效率比较
当m≈n 时,两种方法相当
当m>>n 时,QR 分解的复杂度是正规方程方法的两倍

##插值 -《科学计算导论》7.1、7.2、7.3.1-7.3.3《数值方法与计算机实现》5.1、5.2.1、5.4.1 利用数学函数在已知点上的取值计算其它点上的值
插值函数在基底函数张成的集合中,是基底函数的线性组合
存在性和唯一性
如果给定m个数据点和n个基底函数,则At=y的系数矩阵A 是m×n维

m > n,插值问题一般没有解
m < n,插值问题解不唯一
m = n 且系数矩阵A 不奇异,插值问题有唯一解,插值函数可以精

确地通过给定数据点参数t求解的敏感性取决于系数矩阵A的条件数cond (A),系数矩阵就与基底函数的选择有很大关系

单项式基底

霍纳法则
对于多项式:Pn-1 (x)
求解复杂度

加法n次  
乘法:n(n+1)/2  

按霍纳法则改写为

复杂度:加法n 次,乘法也是n 次

拉格朗日插值
拉格朗日基底函数

拉格朗日插值多项式

牛顿基底函数
牛顿基底函数

牛顿插值多项式