-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathCalibration.py
766 lines (601 loc) · 29 KB
/
Calibration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
__author__ = "Hannes Hoettinger"
import cv2 #open cv2
import cv2.cv as cv #open cv
import time
import numpy as np
from threading import Thread
from threading import Event
import sys
import math
import pickle
import os.path
from im2figure import *
from matplotlib import pyplot as plt
from scipy.stats import gaussian_kde
from scipy.cluster import vq
# visual logging from https://github.com/dchaplinsky/visual-logging
#from logging import FileHandler
#from vlogging import VisualRecord
from numpy.linalg import inv
from VideoCapture import VideoStream
#import logging
DEBUG = True
#logger = logging.getLogger("demo")
#fh = FileHandler('test.html', mode="w")
#logger.setLevel(logging.DEBUG)
#logger.addHandler(fh)
points = []
newpoints = []
circle_radius = []
intersectp = []
rotated_rect = []
intersectp_s = []
center_ellipse = []
ellipse_vertices = []
center_dartboard = []
center_dartboard_new = []
ring_arr = []
winName3 = "hsv image colors?"
winName4 = "Calibration?"
winName5 = "Choose Ring"
#imCalRGB = cv2.imread("/Users/Hannes/Desktop/Darts/Dartboard_2.png")
try:
cam = VideoStream(src=2).start()
# frame = vs.read()
# cam = cv2.VideoCapture(2)
# cam.set(cv.CV_CAP_PROP_FRAME_WIDTH, 1920)
# cam.set(cv.CV_CAP_PROP_FRAME_HEIGHT, 1080)
success,imCalRGB = cam.read()
imCalHSV = cv2.cvtColor(imCalRGB, cv2.COLOR_BGR2HSV)
except:
#vidcap = cv2.VideoCapture("D:/Projekte/PycharmProjects/DartScore/Videos/dartscoreRaw_20170327_193108.avi")
vidcap = cv2.VideoCapture("C:/Users/hanne/OneDrive/Projekte/GitHub/darts/Darts/Darts_Testvideo_9.mp4")
success,imCalRGB = vidcap.read()
#imCalRGB = cv2.imread("Image_kmeans_5clusters.png")
imCalHSV = cv2.cvtColor(imCalRGB, cv2.COLOR_BGR2HSV)
#logger.debug(VisualRecord("Hello from OpenCV", imCalHSV, "This is openCV image", fmt="png"))
#logger.warning(VisualRecord("Hello from all", [imCalHSV, imCalRGB], fmt="png"))
calibrationComplete = False
new_image = imCalRGB.copy() # from camera = 480, 640 # from video 1080, 1920
image_proc_img = imCalRGB.copy()
imCalRGBorig = imCalRGB.copy()
def intersectLineCircle(center, radius, p1, p2):
baX = p2[0] - p1[0]
baY = p2[1] - p1[1]
caX = center[0] - p1[0]
caY = center[1] - p1[1]
a = baX * baX + baY * baY
bBy2 = baX * caX + baY * caY
c = caX * caX + caY * caY - radius * radius
pBy2 = bBy2 / a
q = c / a
disc = pBy2 * pBy2 - q
if disc < 0:
return False, None, False, None
tmpSqrt = math.sqrt(disc)
abScalingFactor1 = -pBy2 + tmpSqrt
abScalingFactor2 = -pBy2 - tmpSqrt
pint1 = p1[0] - baX * abScalingFactor1, p1[1] - baY * abScalingFactor1
if disc == 0:
return True, pint1, False, None
pint2 = p1[0] - baX * abScalingFactor2, p1[1] - baY * abScalingFactor2
return True, pint1, True, pint2
# line intersection
def intersectLines(pt1, pt2, ptA, ptB):
""" this returns the intersection of Line(pt1,pt2) and Line(ptA,ptB)
returns a tuple: (xi, yi, valid, r, s), where
(xi, yi) is the intersection
r is the scalar multiple such that (xi,yi) = pt1 + r*(pt2-pt1)
s is the scalar multiple such that (xi,yi) = pt1 + s*(ptB-ptA)
valid == 0 if there are 0 or inf. intersections (invalid)
valid == 1 if it has a unique intersection ON the segment """
DET_TOLERANCE = 0.00000001
# the first line is pt1 + r*(pt2-pt1)
# in component form:
x1, y1 = pt1
x2, y2 = pt2
dx1 = x2 - x1
dy1 = y2 - y1
# the second line is ptA + s*(ptB-ptA)
x, y = ptA
xB, yB = ptB
dx = xB - x
dy = yB - y
DET = (-dx1 * dy + dy1 * dx)
if math.fabs(DET) < DET_TOLERANCE:
return 0, 0
# now, the determinant should be OK
DETinv = 1.0 / DET
# find the scalar amount along the "self" segment
r = DETinv * (-dy * (x - x1) + dx * (y - y1))
# find the scalar amount along the input line
s = DETinv * (-dy1 * (x - x1) + dx1 * (y - y1))
# return the average of the two descriptions
x = (x1 + r * dx1 + x + s * dx) / 2.0
y = (y1 + r * dy1 + y + s * dy) / 2.0
return x, y
def rotate(origin, point, angle):
"""
Rotate a point counterclockwise by a given angle around a given origin.
The angle should be given in radians.
"""
ox, oy = origin
px, py = point
x = ox + math.cos(angle) * (px - ox) - math.sin(angle) * (py - oy)
y = oy + math.sin(angle) * (px - ox) + math.cos(angle) * (py - oy)
return x, y
def segment_intersection(p1, p2, p3, p4):
x1 = p1[0]
y1 = p1[1]
x2 = p2[0]
y2 = p2[1]
x3 = p3[0]
y3 = p3[1]
x4 = p4[0]
y4 = p4[1]
d = ((x1 - x2) * (y3 - y4)) - ((y1 - y2) * (x3 - x4))
px = ((x1 * y2 - y1 * x2) * (x3 - x4) - (x1 - x2) * (x3 * y4 - y3 * x4)) / d
py = ((x1 * y2 - y1 * x2) * (y3 - y4) - (y1 - y2) * (x3 * y4 - y3 * x4)) / d
return px, py
def nothing(x):
pass
def transformation(new_center, tx1, ty1, tx2, ty2, tx3, ty3, tx4, ty4):
global new_image
global center_dartboard
global ellipse_vertices
global newpoints
global circle_radius
global image_proc_img
sectorangle = 2 * math.pi / 20
# 12/9, 2/15, 8/16, 13/4
#calData_R.dstpoints = [12, 2, 8, 18]
## sectors are sometimes different -> make accessible
# 13/6: 0 | 6/10: 1 | 10/15: 2 | 15/2: 3 | 2/17: 4 | 17/3: 5 | 3/19: 6 | 19/7: 7 | 7/16: 8 | 16/8: 9 | 8/11: 10 |
# 11/14: 11 | 14/9: 12 | 9/12: 13 | 12/5: 14 | 5/20: 15 | 20/1: 16 | 1/18: 17 | 18/4: 18 | 4/13: 19
# used when line rectangle intersection at specific segment is used for transformation:
i = 13 # 9/12 intersection
newtop = [(new_center[0] + 170 * 2 * math.cos((0.5 + i) * sectorangle)),
(new_center[1] + 170 * 2 * math.sin((0.5 + i) * sectorangle))]
i = 3 # 15/2 intersection
newbottom = [(new_center[0] + 170 * 2 * math.cos((0.5 + i) * sectorangle)),
(new_center[1] + 170 * 2 * math.sin((0.5 + i) * sectorangle))]
i = 8 # 7/16 intersection
newleft = [(new_center[0] + 170 * 2 * math.cos((0.5 + i) * sectorangle)),
(new_center[1] + 170 * 2 * math.sin((0.5 + i) * sectorangle))]
i = 18 # 18/4 intersection
newright = [(new_center[0] + 170 * 2 * math.cos((0.5 + i) * sectorangle)),
(new_center[1] + 170 * 2 * math.sin((0.5 + i) * sectorangle))]
# get a fresh new image
new_image = imCalRGB.copy()
#
src = np.array([(points[0][0]+tx1, points[0][1]+ty1), (points[1][0]+tx2, points[1][1]+ty2),
(points[2][0]+tx3, points[2][1]+ty3), (points[3][0]+tx4, points[3][1]+ty4)], np.float32)
dst = np.array([newtop, newbottom, newleft, newright], np.float32)
ret = cv2.getPerspectiveTransform(src, dst)
# cv.GetPerspectiveTransform([points[0],points[1],points[2],points[3]],
# [newtop, newbottom, newleft, newright],mapping)
new_image = cv2.warpPerspective(new_image, ret, (800, 800))
## circle radius sometimes different? -> make accessible
cv2.circle(new_image, (int(new_center[0]), int(new_center[1])), 170 * 2, (0, 255, 0), 1) # outside double
cv2.circle(new_image, (int(new_center[0]), int(new_center[1])), 160 * 2, (0, 255, 0), 1) # inside double
cv2.circle(new_image, (int(new_center[0]), int(new_center[1])), 107 * 2, (0, 255, 0), 1) # outside treble
cv2.circle(new_image, (int(new_center[0]), int(new_center[1])), 97 * 2, (0, 255, 0), 1) # inside treble
cv2.circle(new_image, (int(new_center[0]), int(new_center[1])), 16 * 2, (0, 255, 0), 1) # 25
cv2.circle(new_image, (int(new_center[0]), int(new_center[1])), 7 * 2, (0, 255, 0), 1) # Bulls eye
# 20 sectors...
i = 0
while (i < 20):
cv2.line(new_image, (int(new_center[0]), int(new_center[1])), (
int(new_center[0] + 170 * 2 * math.cos((0.5 + i) * sectorangle)),
int(new_center[1] + 170 * 2 * math.sin((0.5 + i) * sectorangle))), (0, 255, 0), 1)
i = i + 1
cv2.circle(new_image, (int(newtop[0]), int(newtop[1])), 2, cv.CV_RGB(255, 255, 0), 2, 4)
cv2.circle(new_image, (int(newbottom[0]), int(newbottom[1])), 2, cv.CV_RGB(255, 255, 0), 2, 4)
cv2.circle(new_image, (int(newleft[0]), int(newleft[1])), 2, cv.CV_RGB(255, 255, 0), 2, 4)
cv2.circle(new_image, (int(newright[0]), int(newright[1])), 2, cv.CV_RGB(255, 255, 0), 2, 4)
cv2.imshow('manipulation', new_image)
return ret
def calibrate():
#cam = cv2.VideoCapture(1)
global imCalRGB
global new_image
global image_proc_img
global imCalRGBorig
global intersectp
global center_dartboard
global points
#imCalRGB = cv2.imread("/Users/Hannes/Desktop/Darts/Dartboard_2.png")
#imCalRGB = cv2.imread("frame1.jpg")
#success,imCalRGB = cam.read() #cam
cv2.imwrite("frame1.jpg", imCalRGB) # save calibration frame
global calibrationComplete
calibrationComplete = False
while calibrationComplete == False:
#Read calibration file, if exists
if os.path.isfile("calibrationData.pkl"):
try:
# ToDo: adapt system to automatic calibration data
#start a fresh set of points
points = []
calFile = open('calibrationData.pkl', 'rb')
calData = CalibrationData()
calData = pickle.load(calFile)
#load the data into the global variables
transformation_matrix = calData.transformationMatrix
center_dartboard = calData.center_dartboard
ring_radius = []
ring_radius.append(calData.ring_radius[0])
ring_radius.append(calData.ring_radius[1])
ring_radius.append(calData.ring_radius[2])
ring_radius.append(calData.ring_radius[3])
ring_radius.append(calData.ring_radius[4])
ring_radius.append(calData.ring_radius[5]) #append the 6 ring radii
#close the file once we are done reading the data
calFile.close()
#copy image for old calibration data
new_image = imCalRGB.copy()
#now draw them out:
height, width = imCalRGB.shape[:2]
# get a fresh new image
new_image = imCalRGB.copy()
heightnew, widthnew = imCalRGB.shape[:2]
new_image = cv2.warpPerspective(imCalRGBorig,transformation_matrix,(800,800))
# cv.WarpPerspective(imCalRGB,new_image,mapping)
cv2.imshow(winName4, new_image)
cv2.circle(new_image, (int(center_dartboard[0]), int(center_dartboard[1])), ring_radius[0], (0, 255, 0),
1) # outside double
cv2.circle(new_image, (int(center_dartboard[0]), int(center_dartboard[1])), ring_radius[1], (0, 255, 0),
1) # inside double
cv2.circle(new_image, (int(center_dartboard[0]), int(center_dartboard[1])), ring_radius[2], (0, 255, 0),
1) # outside treble
cv2.circle(new_image, (int(center_dartboard[0]), int(center_dartboard[1])), ring_radius[3], (0, 255, 0), 1) # inside treble
cv2.circle(new_image, (int(center_dartboard[0]), int(center_dartboard[1])), ring_radius[4], (0, 255, 0), 1) # 25
cv2.circle(new_image, (int(center_dartboard[0]), int(center_dartboard[1])), ring_radius[5], (0, 255, 0), 1) # Bulls eye
# 20 sectors...
sectorangle = 2 * math.pi / 20
i = 0
while (i < 20):
cv2.line(new_image, (int(center_dartboard[0]), int(center_dartboard[1])), (
int(center_dartboard[0] + 170 * 2 * math.cos((0.5 + i) * sectorangle)),
int(center_dartboard[1] + 170 * 2 * math.sin((0.5 + i) * sectorangle))), (0, 255, 0), 1)
i = i + 1
cv2.imshow(winName4, new_image)
test = cv2.waitKey(0)
if test == 13:
cv2.destroyAllWindows()
#we are good with the previous calibration data
calibrationComplete = True
else:
cv2.destroyAllWindows()
calibrationComplete = True
#delete the calibration file and start over
os.remove("calibrationData.pkl")
#corrupted file
except EOFError as err:
print err
else:
# ToDo: remove manual calibration and adapt system to automatic calibration data
# create new image for imageprocessing
# image_proc_img = new_image.copy()
image_proc_img = imCalRGB.copy()
# call image processing function
imagproccalib()
height, width = imCalRGB.shape[:2]
new_center = (400, 400)
# raw_loc_mat = np.zeros((height, width))
if DEBUG:
#cv2.namedWindow('image')
cv2.namedWindow('image', cv2.WINDOW_NORMAL)
# create trackbars for color change
cv2.createTrackbar('cx', 'image', 0, 20, nothing)
cv2.createTrackbar('cy', 'image', 0, 20, nothing)
cv2.createTrackbar('tx1', 'image', 0, 20, nothing)
cv2.createTrackbar('ty1', 'image', 0, 20, nothing)
cv2.createTrackbar('tx2', 'image', 0, 20, nothing)
cv2.createTrackbar('ty2', 'image', 0, 20, nothing)
cv2.createTrackbar('tx3', 'image', 0, 20, nothing)
cv2.createTrackbar('ty3', 'image', 0, 20, nothing)
cv2.createTrackbar('tx4', 'image', 0, 20, nothing)
cv2.createTrackbar('ty4', 'image', 0, 20, nothing)
cv2.setTrackbarPos('cx', 'image', 10)
cv2.setTrackbarPos('cy', 'image', 10)
cv2.setTrackbarPos('tx1', 'image', 10)
cv2.setTrackbarPos('ty1', 'image', 10)
cv2.setTrackbarPos('tx2', 'image', 10)
cv2.setTrackbarPos('ty2', 'image', 10)
cv2.setTrackbarPos('tx3', 'image', 10)
cv2.setTrackbarPos('ty3', 'image', 10)
cv2.setTrackbarPos('tx4', 'image', 10)
cv2.setTrackbarPos('ty4', 'image', 10)
# create switch for ON/OFF functionality
switch = '0 : OFF \n1 : ON'
cv2.createTrackbar(switch, 'image', 0, 1, nothing)
while (1):
cv2.imshow('image', new_image)
k = cv2.waitKey(1) & 0xFF
if k == 27:
break
# get current positions of four trackbars
cx = cv2.getTrackbarPos('cx', 'image') - 10
cy = cv2.getTrackbarPos('cy', 'image') - 10
tx1 = cv2.getTrackbarPos('tx1', 'image') - 10
ty1 = cv2.getTrackbarPos('ty1', 'image') - 10
tx2 = cv2.getTrackbarPos('tx2', 'image') - 10
ty2 = cv2.getTrackbarPos('ty2', 'image') - 10
tx3 = cv2.getTrackbarPos('tx3', 'image') - 10
ty3 = cv2.getTrackbarPos('ty3', 'image') - 10
tx4 = cv2.getTrackbarPos('tx4', 'image') - 10
ty4 = cv2.getTrackbarPos('ty4', 'image') - 10
s = cv2.getTrackbarPos(switch, 'image')
if s == 0:
new_image[:] = 0
else:
# transform the image to form a perfect circle
transformation_matrix = transformation(new_center, tx1, ty1, tx2, ty2, tx3, ty3, tx4, ty4)
else:
transformation_matrix = transformation(new_center, 3, -1, 4, -3, 0, 0, 1, 5)
cv2.destroyAllWindows()
print "The dartboard image has now been normalized."
print ""
cv2.imshow(winName4, new_image)
cv2.setMouseCallback(winName4, on_mouse_new)
test = cv2.waitKey(0)
if test == 13:
cv2.destroyWindow(winName4)
cv2.destroyAllWindows()
## sectors are sometimes different -> make accessible
ring_radius = [7 * 2, 16 * 2, 97 * 2, 107 * 2, 160 * 2, 170 * 2]
# time.sleep(5)
# cv2.destroyWindow(winName)
#save valuable calibration data into a structure
calData = CalibrationData()
calData.transformationMatrix = transformation_matrix
calData.center_dartboard = new_center
calData.ring_radius = ring_radius
#write the calibration data to a file
calFile = open("calibrationData.pkl", "wb")
pickle.dump(calData, calFile, 0)
calFile.close()
calibrationComplete = True
cv2.destroyAllWindows()
def on_mouse(event, x, y, flags, param):
if event == cv2.EVENT_LBUTTONDOWN:
# events
global points
# append user clicked points
points.append((x, y))
print points
cv2.circle(imCalRGB, (x, y), 3,(255, 0, 0),2, 8)
cv2.imshow(winName3, imCalRGB)
def on_mouse_new(event, x, y, flags, param):
if event == cv2.EVENT_LBUTTONDOWN:
# events
global points
# append user clicked points
points.append((x, y))
print points
cv2.circle(new_image, (x, y), 3,(255, 0, 0),2, 8)
cv2.imshow(winName4, new_image)
# key.set()
def on_mouse_rings(event, x, y, flags, param):
if event == cv2.EVENT_LBUTTONDOWN:
# events
global points
# append user clicked points
points.append((x, y))
print points
cv2.circle(new_image, (x, y), 3,(255, 0, 0),2, 8)
cv2.imshow(winName5, new_image)
# key.set()
def imagproccalib():
global intersectp
global intersectp_s
global center_ellipse
global ellipse_vertices
global newpoints
global circle_radius
# imCalRGB = cv2.cvtColor(imCal, cv2.COLOR_RGB2GRAY)
imCalHSV = cv2.cvtColor(image_proc_img, cv2.COLOR_BGR2HSV)
kernel = np.ones((5, 5), np.float32) / 25
blur = cv2.filter2D(imCalHSV, -1, kernel)
h, s, imCal = cv2.split(blur)
## threshold important -> make accessible
ret, thresh2 = cv2.threshold(imCal, 128, 255, cv2.THRESH_BINARY_INV) # using a video
#ret, thresh2 = cv2.threshold(imCal, 140, 255, cv2.THRESH_BINARY_INV)
#ret, thresh2 = cv2.threshold(imCal, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
## kernel size important -> make accessible
# very important -> removes lines outside the outer ellipse -> find ellipse
kernel = np.ones((3, 3), np.uint8)
thresh2 = cv2.morphologyEx(thresh2, cv2.MORPH_CLOSE, kernel)
cv2.imshow("thresh2", thresh2)
edged = cv2.Canny(thresh2, 250, 255)
# return the edged image
cv2.imshow("test", edged)
# find enclosing ellipse
contours, hierarchy = cv2.findContours(thresh2, 1, 2)
#cv2.drawContours(image_proc_img, contours, -1, (0, 255, 0), 3)
## contourArea threshold important -> make accessible
for cnt in contours:
try: #threshold critical, change on demand?
if 200000/4 < cv2.contourArea(cnt) < 1000000/4:
ellipse = cv2.fitEllipse(cnt)
cv2.ellipse(image_proc_img, ellipse, (0, 255, 0), 2)
x, y = ellipse[0]
a, b = ellipse[1]
angle = ellipse[2]
center_ellipse = (x, y)
a = a/2
b = b/2
cv2.ellipse(image_proc_img, (int(x), int(y)), (int(a), int(b)), int(angle), 0.0, 360.0, cv.CV_RGB(255, 0, 0))
#cv2.circle(image_proc_img, (int(x), int(y-b/2)), 3, cv.CV_RGB(0, 255, 0), 2, 8)
# vertex calculation
xb = b * math.cos(angle)
yb = b * math.sin(angle)
xa = a * math.sin(angle)
ya = a * math.cos(angle)
rect = cv2.minAreaRect(cnt)
box = cv2.cv.BoxPoints(rect)
box = np.int0(box)
#cv2.drawContours(image_proc_img, [box], 0, (0, 0, 255), 2)
# corrupted file
except:
print "error"
cv2.imshow("test4", image_proc_img)
circle_radius = a
anglezone1 = (angle - 5, angle + 5)
anglezone2 = (angle - 100, angle - 80)
# transform ellipse to a perfect circle?
height, width = image_proc_img.shape[:2]
angle = (angle) * math.pi / 180
# build transformation matrix http://math.stackexchange.com/questions/619037/circle-affine-transformation
R1 = np.array([[math.cos(angle), math.sin(angle), 0], [-math.sin(angle), math.cos(angle), 0], [0, 0, 1]])
R2 = np.array([[math.cos(angle), -math.sin(angle), 0], [math.sin(angle), math.cos(angle), 0], [0, 0, 1]])
T1 = np.array([[1, 0, -x], [0, 1, -y], [0, 0, 1]])
T2 = np.array([[1, 0, x], [0, 1, y], [0, 0, 1]])
D = np.array([[1, 0, 0], [0, a / b, 0], [0, 0, 1]])
M = T2.dot(R2.dot(D.dot(R1.dot(T1))))
M_inv = np.linalg.inv(M)
# fit line to find intersec point for dartboard center point
# change houghline parameter of angle
lines = cv2.HoughLines(edged, 1, np.pi / 70, 100, 100)
p = []
lines_seg = []
counter = 0
## sector angles important -> make accessible
for rho, theta in lines[0]:
# split between horizontal and vertical lines (take only lines in certain range)
if theta > np.pi / 180 * anglezone1[0] and theta < np.pi / 180 * anglezone1[1]:
a = np.cos(theta)
b = np.sin(theta)
x0 = a * rho
y0 = b * rho
x1 = int(x0 + 3000 * (-b))
y1 = int(y0 + 3000 * (a))
x2 = int(x0 - 3000 * (-b))
y2 = int(y0 - 3000 * (a))
for rho1, theta1 in lines[0]:
if theta1 > np.pi / 180 * anglezone2[0] and theta1 < np.pi / 180 * anglezone2[1]:
a = np.cos(theta1)
b = np.sin(theta1)
x0 = a * rho1
y0 = b * rho1
x3 = int(x0 + 3000 * (-b))
y3 = int(y0 + 3000 * (a))
x4 = int(x0 - 3000 * (-b))
y4 = int(y0 - 3000 * (a))
if y1 == y2 and y3 == y4: # Horizontal Lines
diff = abs(y1 - y3)
elif x1 == x2 and x3 == x4: # Vertical Lines
diff = abs(x1 - x3)
else:
diff = 0
if diff < 200 and diff is not 0:
continue
#cv2.line(image_proc_img, (x1, y1), (x2, y2), (255, 0, 0), 1)
#cv2.line(image_proc_img, (x3, y3), (x4, y4), (255, 0, 0), 1)
p.append((x1, y1))
p.append((x2, y2))
p.append((x3, y3))
p.append((x4, y4))
intersectpx, intersectpy = intersectLines(p[counter], p[counter + 1], p[counter + 2],
p[counter + 3])
# consider only intersection close to the center of the image
if (intersectpx < 100 or intersectpx > 800) or (intersectpy < 100 or intersectpy > 800):
continue
intersectp.append((intersectpx, intersectpy))
lines_seg.append([(x1, y1), (x2, y2)])
lines_seg.append([(x3, y3), (x4, y4)])
cv2.line(image_proc_img, (x1, y1), (x2, y2), (255, 0, 0), 1)
cv2.line(image_proc_img, (x3, y3), (x4, y4), (255, 0, 0), 1)
# point offset
counter = counter + 4
ellipse_vertices.append([(box[1][0] + box[2][0]) / 2, (box[1][1] + box[2][1]) / 2])
ellipse_vertices.append([(box[2][0] + box[3][0]) / 2, (box[2][1] + box[3][1]) / 2])
ellipse_vertices.append([(box[0][0] + box[3][0]) / 2, (box[0][1] + box[3][1]) / 2])
ellipse_vertices.append([(box[0][0] + box[1][0]) / 2, (box[0][1] + box[1][1]) / 2])
testpoint1 = M.dot(np.transpose(np.hstack([center_ellipse, 1])))
testpoint2 = M.dot(np.transpose(np.hstack([ellipse_vertices[0], 1])))
testpoint3 = M.dot(np.transpose(np.hstack([ellipse_vertices[1], 1])))
testpoint4 = M.dot(np.transpose(np.hstack([ellipse_vertices[2], 1])))
testpoint5 = M.dot(np.transpose(np.hstack([ellipse_vertices[3], 1])))
newpoints.append([testpoint2[0], testpoint2[1]])
newpoints.append([testpoint3[0], testpoint3[1]])
newpoints.append([testpoint4[0], testpoint4[1]])
newpoints.append([testpoint5[0], testpoint5[1]])
newpoints.append([testpoint1[0], testpoint1[1]])
for lin in lines_seg:
line_p1 = M.dot(np.transpose(np.hstack([lin[0], 1])))
line_p2 = M.dot(np.transpose(np.hstack([lin[1], 1])))
inter1, inter_p1, inter2, inter_p2 = intersectLineCircle(np.asarray(center_ellipse), circle_radius, np.asarray(line_p1), np.asarray(line_p2))
#cv2.line(image_proc_img, (int(line_p1[0]), int(line_p1[1])), (int(line_p2[0]), int(line_p2[1])), cv.CV_RGB(255, 0, 0), 2, 8)
if inter1:
#cv2.circle(image_proc_img, (int(inter_p1[0]), int(inter_p1[1])), 3, cv.CV_RGB(0, 0, 255), 2, 8)
inter_p1 = M_inv.dot(np.transpose(np.hstack([inter_p1, 1])))
#cv2.circle(image_proc_img, (int(inter_p1[0]), int(inter_p1[1])), 3, cv.CV_RGB(0, 0, 255), 2, 8)
if inter2:
#cv2.circle(image_proc_img, (int(inter_p1[0]), int(inter_p1[1])), 3, cv.CV_RGB(0, 0, 255), 2, 8)
inter_p2 = M_inv.dot(np.transpose(np.hstack([inter_p2, 1])))
#cv2.circle(image_proc_img, (int(inter_p2[0]), int(inter_p2[1])), 3, cv.CV_RGB(0, 0, 255), 2, 8)
intersectp_s.append(inter_p1)
intersectp_s.append(inter_p2)
try:
# calculate mean val between: 0,4;1,5;2,6;3,7
new_intersect = np.mean(([intersectp_s[0],intersectp_s[4]]), axis=0, dtype=np.float32)
points.append(new_intersect) # top
new_intersect = np.mean(([intersectp_s[1], intersectp_s[5]]), axis=0, dtype=np.float32)
points.append(new_intersect) # bottom
new_intersect = np.mean(([intersectp_s[2], intersectp_s[6]]), axis=0, dtype=np.float32)
points.append(new_intersect) # left
new_intersect = np.mean(([intersectp_s[3], intersectp_s[7]]), axis=0, dtype=np.float32)
points.append(new_intersect) # right
except:
pointarray = np.array(intersectp_s[:4]) # take only first 4 arguments
top_idx = [np.argmin(pointarray[:, 1])][0]
pointarray_1 = np.delete(pointarray, [top_idx], axis=0)
bot_idx = [np.argmax(pointarray_1[:, 1])][0] + 1
pointarray_2 = np.delete(pointarray_1, [bot_idx], axis=0)
left_idx = [np.argmin(pointarray_2[:, 0])][0] + 2
right_idx = [np.argmax(pointarray_2[:, 0])][0] + 2
points.append(intersectp_s[top_idx]) # top
points.append(intersectp_s[bot_idx]) # bottom
points.append(intersectp_s[left_idx]) # left
points.append(intersectp_s[right_idx]) # right
#points.append(intersectp_s[0]) # top
#points.append(intersectp_s[1]) # bottom
#points.append(intersectp_s[2]) # left
#points.append(intersectp_s[3]) # right
cv2.circle(image_proc_img, (int(points[0][0]), int(points[0][1])), 3, cv.CV_RGB(255, 0, 0), 2, 8)
cv2.circle(image_proc_img, (int(points[1][0]), int(points[1][1])), 3, cv.CV_RGB(255, 0, 0), 2, 8)
cv2.circle(image_proc_img, (int(points[2][0]), int(points[2][1])), 3, cv.CV_RGB(255, 0, 0), 2, 8)
cv2.circle(image_proc_img, (int(points[3][0]), int(points[3][1])), 3, cv.CV_RGB(255, 0, 0), 2, 8)
## ellipse vertices
#cv2.circle(image_proc_img, (int(ellipse_vertices[0][0]), int(ellipse_vertices[0][1])), 3, cv.CV_RGB(255, 0, 255), 2, 8)
#cv2.circle(image_proc_img, (int(ellipse_vertices[1][0]), int(ellipse_vertices[1][1])), 3, cv.CV_RGB(255, 0, 255), 2, 8)
#cv2.circle(image_proc_img, (int(ellipse_vertices[2][0]), int(ellipse_vertices[2][1])), 3, cv.CV_RGB(255, 0, 255), 2, 8)
#cv2.circle(image_proc_img, (int(ellipse_vertices[3][0]), int(ellipse_vertices[3][1])), 3, cv.CV_RGB(255, 0, 255), 2, 8)
rotated_rect.append((box[1], box[2]))
rotated_rect.append((box[2], box[3]))
rotated_rect.append((box[0], box[3]))
rotated_rect.append((box[0], box[1]))
winName2 = "th circles?"
cv2.namedWindow(winName2, cv2.CV_WINDOW_AUTOSIZE)
cv2.imshow(winName2, image_proc_img)
#winName2 = "th test?"
#cv2.namedWindow(winName2, cv2.CV_WINDOW_AUTOSIZE)
#cv2.imshow(winName2, dst)
end = cv2.waitKey(0)
if end == 13:
cv2.destroyAllWindows()
#For file IO
class CalibrationData:
def __init__(self):
#for perspective transform
self.transformationMatrix = []
#for calculating the first angle
self.center_dartboard = []
#radii of the rings, there are 6 in total
self.ring_radius = []
if __name__ == '__main__':
print "Welcome to darts!"
#getTransformation()
calibrate()