-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathCalibration_1.py
498 lines (379 loc) · 17.9 KB
/
Calibration_1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
__author__ = "Hannes Hoettinger"
import cv2 #open cv2
import cv2.cv as cv #open cv
import time
import numpy as np
from threading import Thread
from threading import Event
import sys
import math
import pickle
import os.path
from im2figure import *
from numpy.linalg import inv
from MathFunctions import *
from Classes import *
from Draw import *
from VideoCapture import VideoStream
DEBUG = False
ring_arr = []
winName3 = "hsv image colors?"
winName4 = "Calibration?"
winName5 = "Choose Ring"
def nothing(x):
pass
def destinationPoint(i, calData):
dstpoint = [(calData.center_dartboard[0] + calData.ring_radius[5] * math.cos((0.5 + i) * calData.sectorangle)),
(calData.center_dartboard[1] + calData.ring_radius[5] * math.sin((0.5 + i) * calData.sectorangle))]
return dstpoint
def transformation(imCalRGB, calData, tx1, ty1, tx2, ty2, tx3, ty3, tx4, ty4):
points = calData.points
## sectors are sometimes different -> make accessible
# used when line rectangle intersection at specific segment is used for transformation:
newtop = destinationPoint(calData.dstpoints[0], calData)
newbottom = destinationPoint(calData.dstpoints[1], calData)
newleft = destinationPoint(calData.dstpoints[2], calData)
newright = destinationPoint(calData.dstpoints[3], calData)
# get a fresh new image
new_image = imCalRGB.copy()
# create transformation matrix
src = np.array([(points[0][0]+tx1, points[0][1]+ty1), (points[1][0]+tx2, points[1][1]+ty2),
(points[2][0]+tx3, points[2][1]+ty3), (points[3][0]+tx4, points[3][1]+ty4)], np.float32)
dst = np.array([newtop, newbottom, newleft, newright], np.float32)
transformation_matrix = cv2.getPerspectiveTransform(src, dst)
new_image = cv2.warpPerspective(new_image, transformation_matrix, (800, 800))
# draw image
drawBoard = Draw()
new_image = drawBoard.drawBoard(new_image, calData)
cv2.circle(new_image, (int(newtop[0]), int(newtop[1])), 2, cv.CV_RGB(255, 255, 0), 2, 4)
cv2.circle(new_image, (int(newbottom[0]), int(newbottom[1])), 2, cv.CV_RGB(255, 255, 0), 2, 4)
cv2.circle(new_image, (int(newleft[0]), int(newleft[1])), 2, cv.CV_RGB(255, 255, 0), 2, 4)
cv2.circle(new_image, (int(newright[0]), int(newright[1])), 2, cv.CV_RGB(255, 255, 0), 2, 4)
cv2.imshow('manipulation', new_image)
return transformation_matrix
def manipulateTransformationPoints(imCal, calData):
cv2.namedWindow('image', cv2.WINDOW_NORMAL)
cv2.createTrackbar('tx1', 'image', 0, 20, nothing)
cv2.createTrackbar('ty1', 'image', 0, 20, nothing)
cv2.createTrackbar('tx2', 'image', 0, 20, nothing)
cv2.createTrackbar('ty2', 'image', 0, 20, nothing)
cv2.createTrackbar('tx3', 'image', 0, 20, nothing)
cv2.createTrackbar('ty3', 'image', 0, 20, nothing)
cv2.createTrackbar('tx4', 'image', 0, 20, nothing)
cv2.createTrackbar('ty4', 'image', 0, 20, nothing)
cv2.setTrackbarPos('tx1', 'image', 10)
cv2.setTrackbarPos('ty1', 'image', 10)
cv2.setTrackbarPos('tx2', 'image', 10)
cv2.setTrackbarPos('ty2', 'image', 10)
cv2.setTrackbarPos('tx3', 'image', 10)
cv2.setTrackbarPos('ty3', 'image', 10)
cv2.setTrackbarPos('tx4', 'image', 10)
cv2.setTrackbarPos('ty4', 'image', 10)
# create switch for ON/OFF functionality
switch = '0 : OFF \n1 : ON'
cv2.createTrackbar(switch, 'image', 0, 1, nothing)
imCal_copy = imCal.copy()
while (1):
cv2.imshow('image', imCal_copy)
k = cv2.waitKey(1) & 0xFF
if k == 27:
break
# get current positions of four trackbars
tx1 = cv2.getTrackbarPos('tx1', 'image') - 10
ty1 = cv2.getTrackbarPos('ty1', 'image') - 10
tx2 = cv2.getTrackbarPos('tx2', 'image') - 10
ty2 = cv2.getTrackbarPos('ty2', 'image') - 10
tx3 = cv2.getTrackbarPos('tx3', 'image') - 10
ty3 = cv2.getTrackbarPos('ty3', 'image') - 10
tx4 = cv2.getTrackbarPos('tx4', 'image') - 10
ty4 = cv2.getTrackbarPos('ty4', 'image') - 10
s = cv2.getTrackbarPos(switch, 'image')
if s == 0:
imCal_copy[:] = 0
else:
# transform the image to form a perfect circle
transformation_matrix = transformation(imCal, calData, tx1, ty1, tx2, ty2, tx3, ty3, tx4, ty4)
return transformation_matrix
def autocanny(imCal):
# apply automatic Canny edge detection using the computed median
sigma = 0.33
v = np.median(imCal)
#lower = int(max(0, (1.0 - sigma) * v))
#upper = int(min(255, (1.0 + sigma) * v))
edged = cv2.Canny(imCal, 250, 255)
return edged
def findEllipse(thresh2, image_proc_img):
Ellipse = EllipseDef()
contours, hierarchy = cv2.findContours(thresh2, 1, 2)
minThresE = 200000/4
maxThresE = 1000000/4
## contourArea threshold important -> make accessible
for cnt in contours:
try: # threshold critical, change on demand?
if minThresE < cv2.contourArea(cnt) < maxThresE:
ellipse = cv2.fitEllipse(cnt)
cv2.ellipse(image_proc_img, ellipse, (0, 255, 0), 2)
x, y = ellipse[0]
a, b = ellipse[1]
angle = ellipse[2]
center_ellipse = (x, y)
a = a / 2
b = b / 2
cv2.ellipse(image_proc_img, (int(x), int(y)), (int(a), int(b)), int(angle), 0.0, 360.0,
cv.CV_RGB(255, 0, 0))
# corrupted file
except:
print "error"
return Ellipse, image_proc_img
Ellipse.a = a
Ellipse.b = b
Ellipse.x = x
Ellipse.y = y
Ellipse.angle = angle
return Ellipse, image_proc_img
def findSectorLines(edged, image_proc_img, angleZone1, angleZone2):
p = []
intersectp = []
lines_seg = []
counter = 0
# fit line to find intersec point for dartboard center point
lines = cv2.HoughLines(edged, 1, np.pi / 80, 100, 100)
## sector angles important -> make accessible
for rho, theta in lines[0]:
# split between horizontal and vertical lines (take only lines in certain range)
if theta > np.pi / 180 * angleZone1[0] and theta < np.pi / 180 * angleZone1[1]:
a = np.cos(theta)
b = np.sin(theta)
x0 = a * rho
y0 = b * rho
x1 = int(x0 + 2000 * (-b))
y1 = int(y0 + 2000 * (a))
x2 = int(x0 - 2000 * (-b))
y2 = int(y0 - 2000 * (a))
for rho1, theta1 in lines[0]:
if theta1 > np.pi / 180 * angleZone2[0] and theta1 < np.pi / 180 * angleZone2[1]:
a = np.cos(theta1)
b = np.sin(theta1)
x0 = a * rho1
y0 = b * rho1
x3 = int(x0 + 2000 * (-b))
y3 = int(y0 + 2000 * (a))
x4 = int(x0 - 2000 * (-b))
y4 = int(y0 - 2000 * (a))
if y1 == y2 and y3 == y4: # Horizontal Lines
diff = abs(y1 - y3)
elif x1 == x2 and x3 == x4: # Vertical Lines
diff = abs(x1 - x3)
else:
diff = 0
if diff < 200 and diff is not 0:
continue
cv2.line(image_proc_img, (x1, y1), (x2, y2), (255, 0, 0), 1)
cv2.line(image_proc_img, (x3, y3), (x4, y4), (255, 0, 0), 1)
p.append((x1, y1))
p.append((x2, y2))
p.append((x3, y3))
p.append((x4, y4))
intersectpx, intersectpy = intersectLines(p[counter], p[counter + 1], p[counter + 2],
p[counter + 3])
# consider only intersection close to the center of the image
if intersectpx < 200 or intersectpx > 900 or intersectpy < 200 or intersectpy > 900:
continue
intersectp.append((intersectpx, intersectpy))
lines_seg.append([(x1, y1), (x2, y2)])
lines_seg.append([(x3, y3), (x4, y4)])
cv2.line(image_proc_img, (x1, y1), (x2, y2), (255, 0, 0), 1)
cv2.line(image_proc_img, (x3, y3), (x4, y4), (255, 0, 0), 1)
# point offset
counter = counter + 4
return lines_seg, image_proc_img
def ellipse2circle(Ellipse):
angle = (Ellipse.angle) * math.pi / 180
x = Ellipse.x
y = Ellipse.y
a = Ellipse.a
b = Ellipse.b
# build transformation matrix http://math.stackexchange.com/questions/619037/circle-affine-transformation
R1 = np.array([[math.cos(angle), math.sin(angle), 0], [-math.sin(angle), math.cos(angle), 0], [0, 0, 1]])
R2 = np.array([[math.cos(angle), -math.sin(angle), 0], [math.sin(angle), math.cos(angle), 0], [0, 0, 1]])
T1 = np.array([[1, 0, -x], [0, 1, -y], [0, 0, 1]])
T2 = np.array([[1, 0, x], [0, 1, y], [0, 0, 1]])
D = np.array([[1, 0, 0], [0, a / b, 0], [0, 0, 1]])
M = T2.dot(R2.dot(D.dot(R1.dot(T1))))
return M
def getEllipseLineIntersection(Ellipse, M, lines_seg):
center_ellipse = (Ellipse.x, Ellipse.y)
circle_radius = Ellipse.a
M_inv = np.linalg.inv(M)
# find line circle intersection and use inverse transformation matrix to transform it back to the ellipse
intersectp_s = []
for lin in lines_seg:
line_p1 = M.dot(np.transpose(np.hstack([lin[0], 1])))
line_p2 = M.dot(np.transpose(np.hstack([lin[1], 1])))
inter1, inter_p1, inter2, inter_p2 = intersectLineCircle(np.asarray(center_ellipse), circle_radius,
np.asarray(line_p1), np.asarray(line_p2))
if inter1:
inter_p1 = M_inv.dot(np.transpose(np.hstack([inter_p1, 1])))
if inter2:
inter_p2 = M_inv.dot(np.transpose(np.hstack([inter_p2, 1])))
intersectp_s.append(inter_p1)
intersectp_s.append(inter_p2)
return intersectp_s
def getTransformationPoints(image_proc_img, mount):
imCalHSV = cv2.cvtColor(image_proc_img, cv2.COLOR_BGR2HSV)
kernel = np.ones((5, 5), np.float32) / 25
blur = cv2.filter2D(imCalHSV, -1, kernel)
h, s, imCal = cv2.split(blur)
## threshold important -> make accessible
#ret, thresh = cv2.threshold(imCal, 140, 255, cv2.THRESH_BINARY_INV)
ret, thresh = cv2.threshold(imCal, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
## kernel size important -> make accessible
# very important -> removes lines outside the outer ellipse -> find ellipse
kernel = np.ones((5, 5), np.uint8)
thresh2 = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)
cv2.imshow("thresh2", thresh2)
# find enclosing ellipse
Ellipse, image_proc_img = findEllipse(thresh2, image_proc_img)
# return the edged image
edged = autocanny(thresh2) # imCal
cv2.imshow("test", edged)
# find 2 sector lines -> horizontal and vertical sector line -> make angles accessible? with slider?
if mount == "right":
angleZone1 = (Ellipse.angle - 5, Ellipse.angle + 5)
angleZone2 = (Ellipse.angle - 100, Ellipse.angle - 80)
lines_seg, image_proc_img = findSectorLines(edged, image_proc_img, angleZone1, angleZone2)
else:
lines_seg, image_proc_img = findSectorLines(edged, image_proc_img, angleZone1=(80, 120), angleZone2=(30, 40))
cv2.imshow("test4", image_proc_img)
# ellipse 2 circle transformation to find intersection points -> source points for transformation
M = ellipse2circle(Ellipse)
intersectp_s = getEllipseLineIntersection(Ellipse, M, lines_seg)
source_points = []
try:
new_intersect = np.mean(([intersectp_s[0],intersectp_s[4]]), axis=0, dtype=np.float32)
source_points.append(new_intersect) # top
new_intersect = np.mean(([intersectp_s[1], intersectp_s[5]]), axis=0, dtype=np.float32)
source_points.append(new_intersect) # bottom
new_intersect = np.mean(([intersectp_s[2], intersectp_s[6]]), axis=0, dtype=np.float32)
source_points.append(new_intersect) # left
new_intersect = np.mean(([intersectp_s[3], intersectp_s[7]]), axis=0, dtype=np.float32)
source_points.append(new_intersect) # right
except:
pointarray = np.array(intersectp_s)
top_idx = [np.argmin(pointarray[:, 1])][0]
bot_idx = [np.argmax(pointarray[:, 1])][0]
if mount == "right":
left_idx = [np.argmin(pointarray[:, 0])][0]
right_idx = [np.argmax(pointarray[:, 0])][0]
else:
left_idx = [np.argmax(pointarray[:, 0])][0]
right_idx = [np.argmin(pointarray[:, 0])][0]
source_points.append(intersectp_s[top_idx]) # top
source_points.append(intersectp_s[bot_idx]) # bottom
source_points.append(intersectp_s[left_idx]) # left
source_points.append(intersectp_s[right_idx]) # right
cv2.circle(image_proc_img, (int(source_points[0][0]), int(source_points[0][1])), 3, cv.CV_RGB(255, 0, 0), 2, 8)
cv2.circle(image_proc_img, (int(source_points[1][0]), int(source_points[1][1])), 3, cv.CV_RGB(255, 0, 0), 2, 8)
cv2.circle(image_proc_img, (int(source_points[2][0]), int(source_points[2][1])), 3, cv.CV_RGB(255, 0, 0), 2, 8)
cv2.circle(image_proc_img, (int(source_points[3][0]), int(source_points[3][1])), 3, cv.CV_RGB(255, 0, 0), 2, 8)
winName2 = "th circles?"
cv2.namedWindow(winName2, cv2.CV_WINDOW_AUTOSIZE)
cv2.imshow(winName2, image_proc_img)
end = cv2.waitKey(0)
if end == 13:
cv2.destroyAllWindows()
return source_points
def calibrate(cam_R, cam_L):
try:
success, imCalRGB_R = cam_R.read()
_, imCalRGB_L = cam_L.read()
except:
print "Could not init cams"
return
imCal_R = imCalRGB_R.copy()
imCal_L = imCalRGB_L.copy()
imCalRGBorig = imCalRGB_R.copy()
cv2.imwrite("frame1_R.jpg", imCalRGB_R) # save calibration frame
cv2.imwrite("frame1_L.jpg", imCalRGB_L) # save calibration frame
global calibrationComplete
calibrationComplete = False
while calibrationComplete == False:
#Read calibration file, if exists
if os.path.isfile("calibrationData_R.pkl"):
try:
calFile = open('calibrationData_R.pkl', 'rb')
calData_R = CalibrationData()
calData_R = pickle.load(calFile)
calFile.close()
calFile = open('calibrationData_L.pkl', 'rb')
calData_L = CalibrationData()
calData_L = pickle.load(calFile)
calFile.close()
#copy image for old calibration data
transformed_img_R = imCalRGB_R.copy()
transformed_img_L = imCalRGB_L.copy()
transformed_img_R = cv2.warpPerspective(imCalRGB_R, calData_R.transformation_matrix, (800, 800))
transformed_img_L = cv2.warpPerspective(imCalRGB_L, calData_L.transformation_matrix, (800, 800))
draw_R = Draw()
draw_L = Draw()
transformed_img_R = draw_R.drawBoard(transformed_img_R, calData_R)
transformed_img_L = draw_L.drawBoard(transformed_img_L, calData_L)
cv2.imshow("Right Cam", transformed_img_R)
cv2.imshow("Left Cam", transformed_img_L)
test = cv2.waitKey(0)
if test == 13:
cv2.destroyAllWindows()
#we are good with the previous calibration data
calibrationComplete = True
return calData_R, calData_L
else:
cv2.destroyAllWindows()
calibrationComplete = True
#delete the calibration file and start over
os.remove("calibrationData_R.pkl")
os.remove("calibrationData_L.pkl")
#restart calibration
calibrate(cam_R, cam_L)
#corrupted file
except EOFError as err:
print err
# start calibration if no calibration data exists
else:
calData_R = CalibrationData()
calData_L = CalibrationData()
imCal_R = imCalRGB_R.copy()
imCal_L = imCalRGB_L.copy()
calData_R.points = getTransformationPoints(imCal_R, "right")
# 13/6: 0 | 6/10: 1 | 10/15: 2 | 15/2: 3 | 2/17: 4 | 17/3: 5 | 3/19: 6 | 19/7: 7 | 7/16: 8 | 16/8: 9 |
# 8/11: 10 | 11/14: 11 | 14/9: 12 | 9/12: 13 | 12/5: 14 | 5/20: 15 | 20/1: 16 | 1/18: 17 | 18/4: 18 | 4/13: 19
# top, bottom, left, right
# 12/9, 2/15, 8/16, 13/4
calData_R.dstpoints = [12, 2, 8, 18]
calData_R.transformation_matrix = manipulateTransformationPoints(imCal_R, calData_R)
calData_L.points = getTransformationPoints(imCal_L, "left")
# 12/9, 2/15, 8/16, 13/4
calData_L.dstpoints = [12, 2, 8, 18]
calData_L.transformation_matrix = manipulateTransformationPoints(imCal_L, calData_L)
cv2.destroyAllWindows()
print "The dartboard image has now been normalized."
print ""
cv2.imshow(winName4, imCal_R)
test = cv2.waitKey(0)
if test == 13:
cv2.destroyWindow(winName4)
cv2.destroyAllWindows()
#write the calibration data to a file
calFile = open("calibrationData_R.pkl", "wb")
pickle.dump(calData_R, calFile, 0)
calFile.close()
calFile = open("calibrationData_L.pkl", "wb")
pickle.dump(calData_L, calFile, 0)
calFile.close()
calibrationComplete = True
return calData_R, calData_L
cv2.destroyAllWindows()
if __name__ == '__main__':
print "Welcome to darts!"
cam_R = VideoStream(src=2).start()
cam_L = VideoStream(src=3).start()
calibrate(cam_R, cam_L)