-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathDartsRecognition.py
322 lines (247 loc) · 10.5 KB
/
DartsRecognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
__author__ = "Hannes Hoettinger"
import numpy as np
import cv2
import time
import cv2.cv as cv
import math
import pickle
from Classes import *
from MathFunctions import *
from DartsMapping import *
from Draw import *
DEBUG = False
winName = "test2"
def cam2gray(cam):
success, image = cam.read()
img_g = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
return success, img_g
def getThreshold(cam, t):
success, t_plus = cam2gray(cam)
dimg = cv2.absdiff(t, t_plus)
blur = cv2.GaussianBlur(dimg, (5, 5), 0)
blur = cv2.bilateralFilter(blur, 9, 75, 75)
_, thresh = cv2.threshold(blur, 60, 255, 0)
return thresh
def diff2blur(cam, t):
_, t_plus = cam2gray(cam)
dimg = cv2.absdiff(t, t_plus)
## kernel size important -> make accessible
# filter noise from image distortions
kernel = np.ones((5, 5), np.float32) / 25
blur = cv2.filter2D(dimg, -1, kernel)
return t_plus, blur
def getCorners(img_in):
# number of features to track is a distinctive feature
## FeaturesToTrack important -> make accessible
edges = cv2.goodFeaturesToTrack(img_in, 640, 0.0008, 1, mask=None, blockSize=3, useHarrisDetector=1, k=0.06) # k=0.08
corners = np.int0(edges)
return corners
def filterCorners(corners):
cornerdata = []
tt = 0
mean_corners = np.mean(corners, axis=0)
for i in corners:
xl, yl = i.ravel()
# filter noise to only get dart arrow
## threshold important -> make accessible
if abs(mean_corners[0][0] - xl) > 180:
cornerdata.append(tt)
if abs(mean_corners[0][1] - yl) > 120:
cornerdata.append(tt)
tt += 1
corners_new = np.delete(corners, [cornerdata], axis=0) # delete corners to form new array
return corners_new
def filterCornersLine(corners, rows, cols):
[vx, vy, x, y] = cv2.fitLine(corners, cv.CV_DIST_HUBER, 0, 0.1, 0.1)
lefty = int((-x * vy / vx) + y)
righty = int(((cols - x) * vy / vx) + y)
cornerdata = []
tt = 0
for i in corners:
xl, yl = i.ravel()
# check distance to fitted line, only draw corners within certain range
distance = dist(0, lefty, cols - 1, righty, xl, yl)
if distance > 40: ## threshold important -> make accessible
cornerdata.append(tt)
tt += 1
corners_final = np.delete(corners, [cornerdata], axis=0) # delete corners to form new array
return corners_final
def getRealLocation(corners_final, mount):
if mount == "right":
loc = np.argmax(corners_final, axis=0)
else:
loc = np.argmin(corners_final, axis=0)
locationofdart = corners_final[loc]
# check if dart location has neighbouring corners (if not -> continue)
cornerdata = []
tt = 0
for i in corners_final:
xl, yl = i.ravel()
distance = abs(locationofdart.item(0) - xl) + abs(locationofdart.item(1) - yl)
if distance < 40: ## threshold important
tt += 1
else:
cornerdata.append(tt)
if tt < 3:
corners_temp = cornerdata
maxloc = np.argmax(corners_temp, axis=0)
locationofdart = corners_temp[maxloc]
print "### used different location due to noise!"
return locationofdart
def getDarts(cam_R, cam_L, calData_R, calData_L, playerObj, GUI):
finalScore = 0
count = 0
breaker = 0
## threshold important -> make accessible
minThres = 2000/2
maxThres = 15000/2
# save score if score is below 1...
old_score = playerObj.score
# Read first image twice (issue somewhere) to start loop:
_, _ = cam2gray(cam_R)
_, _ = cam2gray(cam_L)
# wait for camera
time.sleep(0.1)
success, t_R = cam2gray(cam_R)
_, t_L = cam2gray(cam_L)
while success:
# wait for camera
time.sleep(0.1)
# check if dart hit the board
thresh_R = getThreshold(cam_R, t_R)
thresh_L = getThreshold(cam_L, t_L)
print cv2.countNonZero(thresh_R)
## threshold important
if (cv2.countNonZero(thresh_R) > minThres and cv2.countNonZero(thresh_R) < maxThres) \
or (cv2.countNonZero(thresh_L) > minThres and cv2.countNonZero(thresh_L) < maxThres):
# wait for camera vibrations
time.sleep(0.2)
# filter noise
t_plus_R, blur_R = diff2blur(cam_R, t_R)
t_plus_L, blur_L = diff2blur(cam_L, t_L)
# get corners
corners_R = getCorners(blur_R)
corners_L = getCorners(blur_L)
testimg = blur_R.copy()
# dart outside?
if corners_R.size < 40 and corners_L.size < 40:
print "### dart not detected"
continue
# filter corners
corners_f_R = filterCorners(corners_R)
corners_f_L = filterCorners(corners_L)
# dart outside?
if corners_f_R.size < 30 and corners_f_L.size < 30:
print "### dart not detected"
continue
# find left and rightmost corners#
rows, cols = blur_R.shape[:2]
corners_final_R = filterCornersLine(corners_f_R, rows, cols)
corners_final_L = filterCornersLine(corners_f_L, rows, cols)
_, thresh_R = cv2.threshold(blur_R, 60, 255, 0)
_, thresh_L = cv2.threshold(blur_L, 60, 255, 0)
# check if it was really a dart
print cv2.countNonZero(thresh_R)
if cv2.countNonZero(thresh_R) > maxThres*2 or cv2.countNonZero(thresh_L) > maxThres*2:
continue
print "Dart detected"
# dart was found -> increase counter
breaker += 1
dartInfo = DartDef()
# get final darts location
try:
dartInfo_R = DartDef()
dartInfo_L = DartDef()
dartInfo_R.corners = corners_final_R.size
dartInfo_L.corners = corners_final_L.size
locationofdart_R = getRealLocation(corners_final_R, "right")
locationofdart_L = getRealLocation(corners_final_L, "left")
# check for the location of the dart with the calibration
dartloc_R = getTransformedLocation(locationofdart_R.item(0), locationofdart_R.item(1), calData_R)
dartloc_L = getTransformedLocation(locationofdart_L.item(0), locationofdart_L.item(1), calData_L)
# detect region and score
dartInfo_R = getDartRegion(dartloc_R, calData_R)
dartInfo_L = getDartRegion(dartloc_L, calData_L)
cv2.circle(testimg, (locationofdart_R.item(0), locationofdart_R.item(1)), 10, (255, 255, 255), 2, 8)
cv2.circle(testimg, (locationofdart_R.item(0), locationofdart_R.item(1)), 2, (0, 255, 0), 2, 8)
except:
print "Something went wrong in finding the darts location!"
breaker -= 1
continue
# "merge" scores
if dartInfo_R.base == dartInfo_L.base and dartInfo_R.multiplier == dartInfo_L.multiplier:
dartInfo = dartInfo_R
# use the score of the image with more corners
else:
if dartInfo_R.corners > dartInfo_L.corners:
dartInfo = dartInfo_R
else:
dartInfo = dartInfo_L
print dartInfo.base, dartInfo.multiplier
if breaker == 1:
GUI.dart1entry.insert(10,str(dartInfo.base * dartInfo.multiplier))
dart = int(GUI.dart1entry.get())
cv2.imwrite("frame2.jpg", testimg) # save dart1 frame
elif breaker == 2:
GUI.dart2entry.insert(10,str(dartInfo.base * dartInfo.multiplier))
dart = int(GUI.dart2entry.get())
cv2.imwrite("frame3.jpg", testimg) # save dart2 frame
elif breaker == 3:
GUI.dart3entry.insert(10,str(dartInfo.base * dartInfo.multiplier))
dart = int(GUI.dart3entry.get())
cv2.imwrite("frame4.jpg", testimg) # save dart3 frame
playerObj.score -= dart
if playerObj.score == 0 and dartInfo.multiplier == 2:
playerObj.score = 0
breaker = 3
elif playerObj.score <= 1:
playerObj.score = old_score
breaker = 3
# save new diff img for next dart
t_R = t_plus_R
t_L = t_plus_L
if playerObj.player == 1:
GUI.e1.delete(0,'end')
GUI.e1.insert(10,playerObj.score)
else:
GUI.e2.delete(0,'end')
GUI.e2.insert(10,playerObj.score)
finalScore += (dartInfo.base * dartInfo.multiplier)
if breaker == 3:
break
#cv2.imshow(winName, tnow)
# missed dart
elif cv2.countNonZero(thresh_R) < maxThres/2 or cv2.countNonZero(thresh_L) < maxThres/2:
continue
# if player enters zone - break loop
elif cv2.countNonZero(thresh_R) > maxThres/2 or cv2.countNonZero(thresh_L) > maxThres/2:
break
key = cv2.waitKey(10)
if key == 27:
cv2.destroyWindow(winName)
break
count += 1
GUI.finalentry.delete(0, 'end')
GUI.finalentry.insert(10,finalScore)
print finalScore
if __name__ == '__main__':
print "Welcome to darts!"
img = cv2.imread("D:\Projekte\PycharmProjects\DartsScorer\Darts\Dartboard_2.png")
img2 = cv2.imread("D:\Projekte\PycharmProjects\DartsScorer\Darts\Dartboard_3.png")
vidcap = cv2.VideoCapture("C:\Users\hanne\OneDrive\Projekte\GitHub\darts\Darts\Darts_Testvideo_9_1.mp4")
from_video = True
# if DEBUG:
# loc_x = dartloc[0] # 400 + dartInfo.magnitude * math.tan(dartInfo.angle * math.pi/180)
# loc_y = dartloc[1] # 400 + dartInfo.magnitude * math.tan(dartInfo.angle * math.pi/180)
# cv2.circle(debug_img, (int(loc_x), int(loc_y)), 2, (0, 255, 0), 2, 8)
# cv2.circle(debug_img, (int(loc_x), int(loc_y)), 6, (0, 255, 0), 1, 8)
# string = "" + str(dartInfo.base) + "x" + str(dartInfo.multiplier)
# # add text (before clear with rectangle)
# cv2.rectangle(debug_img, (600, 700), (800, 800), (0, 0, 0), -1)
# cv2.putText(debug_img, string, (600, 750), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 255, 255), 2, 8)
# cv2.namedWindow(winName, cv2.WINDOW_NORMAL)
# cv2.namedWindow("raw", cv2.WINDOW_NORMAL)
# cv2.namedWindow("test", cv2.WINDOW_NORMAL)
# cv2.imshow(winName, debug_img)
# cv2.imshow("raw", t_plus_copy)
# cv2.imshow("test", testimg)