Skip to content

[Bug] distill wan 2.1, video is all noise #503

@sccao123

Description

@sccao123

Describe the bug

Hi, I noticed that you released the code for the distilled WAN model, so I tried running it. Since I’m using 7 A100 GPUs, I set nproc_per_node=7 and also reduced num_latent_t from 32 to 28 to save GPU memory. However, the output videos (those from the validation phase) were completely filled with noise. I’d like to know whether this is due to an issue in the current code or caused by my adjustments to these two parameters.

Image

Reproduction

ash scripts/distill/distill_wan.sh. Wan2.1-T2V-1.3B-Diffusers.

Environment

Collecting environment information...
PyTorch version: 2.6.0+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A

OS: Ubuntu 18.04.5 LTS (x86_64)
GCC version: (GCC) 8.2.0
Clang version: 3.8.0 (tags/RELEASE_380/final)
CMake version: version 3.16.0
Libc version: glibc-2.27

Python version: 3.12.11 | packaged by conda-forge | (main, Jun 4 2025, 14:45:31) [GCC 13.3.0] (64-bit runtime)
Python platform: Linux-5.10.0-1.0.0.28-x86_64-with-glibc2.27
Is CUDA available: True
CUDA runtime version: 11.8.89
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA A100-SXM4-40GB
GPU 1: NVIDIA A100-SXM4-40GB
GPU 2: NVIDIA A100-SXM4-40GB
GPU 3: NVIDIA A100-SXM4-40GB
GPU 4: NVIDIA A100-SXM4-40GB
GPU 5: NVIDIA A100-SXM4-40GB
GPU 6: NVIDIA A100-SXM4-40GB
GPU 7: NVIDIA A100-SXM4-40GB

Nvidia driver version: 525.125.06
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.1.1
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.1.1
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.1.1
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.1.1
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.1.1
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.1.1
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.1.1
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 160
On-line CPU(s) list: 0-159
Thread(s) per core: 2
Core(s) per socket: 20
Socket(s): 4
NUMA node(s): 4
Vendor ID: GenuineIntel
CPU family: 6
Model: 85
Model name: Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz
Stepping: 4
CPU MHz: 3100.257
CPU max MHz: 3700.0000
CPU min MHz: 1000.0000
BogoMIPS: 4800.00
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 1024K
L3 cache: 28160K
NUMA node0 CPU(s): 0-19,80-99
NUMA node1 CPU(s): 20-39,100-119
NUMA node2 CPU(s): 40-59,120-139
NUMA node3 CPU(s): 60-79,140-159
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts pku md_clear flush_l1d

Versions of relevant libraries:
[pip3] accelerate==1.0.1
[pip3] numpy==2.1.2
[pip3] nvidia-cublas-cu11==11.11.3.6
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu11==11.8.87
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu11==11.8.89
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu11==11.8.89
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu11==9.1.0.70
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu11==10.9.0.58
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu11==10.3.0.86
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu11==11.4.1.48
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu11==11.7.5.86
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-cusparselt-cu12==0.6.2
[pip3] nvidia-ml-py==12.575.51
[pip3] nvidia-nccl-cu11==2.20.5
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu11==11.8.86
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] peft==0.13.2
[pip3] pyzmq==26.4.0
[pip3] torch==2.6.0
[pip3] torchaudio==2.6.0
[pip3] torchvision==0.21.0
[pip3] transformers==4.52.4
[pip3] triton==3.2.0
[conda] accelerate 1.0.1 pypi_0 pypi
[conda] numpy 2.1.2 pypi_0 pypi
[conda] nvidia-cublas-cu11 11.11.3.6 pypi_0 pypi
[conda] nvidia-cublas-cu12 12.4.5.8 pypi_0 pypi
[conda] nvidia-cuda-cupti-cu11 11.8.87 pypi_0 pypi
[conda] nvidia-cuda-cupti-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cuda-nvrtc-cu11 11.8.89 pypi_0 pypi
[conda] nvidia-cuda-nvrtc-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cuda-runtime-cu11 11.8.89 pypi_0 pypi
[conda] nvidia-cuda-runtime-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cudnn-cu11 9.1.0.70 pypi_0 pypi
[conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi
[conda] nvidia-cufft-cu11 10.9.0.58 pypi_0 pypi
[conda] nvidia-cufft-cu12 11.2.1.3 pypi_0 pypi
[conda] nvidia-curand-cu11 10.3.0.86 pypi_0 pypi
[conda] nvidia-curand-cu12 10.3.5.147 pypi_0 pypi
[conda] nvidia-cusolver-cu11 11.4.1.48 pypi_0 pypi
[conda] nvidia-cusolver-cu12 11.6.1.9 pypi_0 pypi
[conda] nvidia-cusparse-cu11 11.7.5.86 pypi_0 pypi
[conda] nvidia-cusparse-cu12 12.3.1.170 pypi_0 pypi
[conda] nvidia-cusparselt-cu12 0.6.2 pypi_0 pypi
[conda] nvidia-ml-py 12.575.51 pypi_0 pypi
[conda] nvidia-nccl-cu11 2.20.5 pypi_0 pypi
[conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi
[conda] nvidia-nvjitlink-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-nvtx-cu11 11.8.86 pypi_0 pypi
[conda] nvidia-nvtx-cu12 12.4.127 pypi_0 pypi
[conda] peft 0.13.2 pypi_0 pypi
[conda] pyzmq 26.4.0 pypi_0 pypi
[conda] torch 2.6.0 pypi_0 pypi
[conda] torchaudio 2.6.0 pypi_0 pypi
[conda] torchvision 0.21.0 pypi_0 pypi
[conda] transformers 4.52.4 pypi_0 pypi
[conda] triton 3.2.0 pypi_0 pypi
FastVideo Version:
FastVideo Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 NIC0 NIC1 NIC2 CPU Affinity NUMA Affinity
GPU0 X NV12 NV12 NV12 NV12 NV12 NV12 NV12 PXB SYS SYS 0-19,80-99 0
GPU1 NV12 X NV12 NV12 NV12 NV12 NV12 NV12 PXB SYS SYS 0-19,80-99 0
GPU2 NV12 NV12 X NV12 NV12 NV12 NV12 NV12 SYS NODE PXB 20-39,100-119 1
GPU3 NV12 NV12 NV12 X NV12 NV12 NV12 NV12 SYS NODE PXB 20-39,100-119 1
GPU4 NV12 NV12 NV12 NV12 X NV12 NV12 NV12 SYS SYS SYS 40-59,120-139 2
GPU5 NV12 NV12 NV12 NV12 NV12 X NV12 NV12 SYS SYS SYS 40-59,120-139 2
GPU6 NV12 NV12 NV12 NV12 NV12 NV12 X NV12 SYS SYS SYS 60-79,140-159 3
GPU7 NV12 NV12 NV12 NV12 NV12 NV12 NV12 X SYS SYS SYS 60-79,140-159 3
NIC0 PXB PXB SYS SYS SYS SYS SYS SYS X SYS SYS
NIC1 SYS SYS NODE NODE SYS SYS SYS SYS SYS X NODE
NIC2 SYS SYS PXB PXB SYS SYS SYS SYS SYS NODE X

Legend:

X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks

NIC Legend:

NIC0: mlx5_0
NIC1: mlx5_1
NIC2: mlx5_2

CUDNN_VERSION=8.1.1.33
LD_LIBRARY_PATH=/root/paddlejob/workspace/env_run/chenjinwen/env/cuda-11.8/lib64:/root/paddlejob/workspace/env_run/chenjinwen/env/cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib:/home/opt/gpuproxy/lib64:/usr/local/lib:/usr/local/x86_64-pc-linux-gnu/lib:/home/opt/nvidia_lib:/usr/local/cuda/lib64:/usr/lib64:/usr/local/lib:/usr/lib/x86_64-linux-gnu/
NCCL_IB_GID_INDEX=3
NCCL_IB_ADAPTIVE_ROUTING=1
NCCL_IB_DISABLE=0
NVIDIA_VISIBLE_GPUS_SLOT=2,3,4,5,6,7,0,1
NVIDIA_TOOLS=/home/opt/cuda_tools
NCCL_DEBUG_FILE=/root/paddlejob/workspace/log/nccl.%h.%p.log
NCCL_IB_CONNECT_RETRY_CNT=15
NVIDIA_VISIBLE_DEVICES=GPU-4ac5d0a2-6b9e-9b51-ce13-2c24d2fda37b,GPU-763c8a98-eb74-05fd-67a7-fdddee6aab91,GPU-cda43ad3-6a26-775e-ff0b-188ad0c656b5,GPU-d6efe4ad-4f1e-30e8-c1da-4250beac9640,GPU-e71c8db0-2c17-cea5-526d-86179e85ca51,GPU-39316292-d8d3-cebb-fd15-bbe60737578c,GPU-7b5e1f8c-3288-6bba-6c97-69284916cf6b,GPU-8145700b-60b5-db98-56fc-7f77521e735f
NCCL_IB_TIMEOUT=22
NCCL_VERSION=2.8.4
NCCL_IB_CUDA_SUPPORT=0
NVIDIA_GDRCOPY=enabled
NVIDIA_VISIBLE_GPUS_UUID=GPU-4ac5d0a2-6b9e-9b51-ce13-2c24d2fda37b,GPU-763c8a98-eb74-05fd-67a7-fdddee6aab91,GPU-cda43ad3-6a26-775e-ff0b-188ad0c656b5,GPU-d6efe4ad-4f1e-30e8-c1da-4250beac9640,GPU-e71c8db0-2c17-cea5-526d-86179e85ca51,GPU-39316292-d8d3-cebb-fd15-bbe60737578c,GPU-7b5e1f8c-3288-6bba-6c97-69284916cf6b,GPU-8145700b-60b5-db98-56fc-7f77521e735f
NVIDIA_LIB=/usr/local/nvidia/lib64
NCCL_P2P_DISABLE=0
CUDA_VERSION=11.2.1
NCCL_IB_QPS_PER_CONNECTION=2
NCCL_ERROR_FILE=/root/paddlejob/workspace/log/err.%h.%p.log
NVIDIA_DRIVER_CAPABILITIES=compute,utility
NVIDIA_REQUIRE_CUDA=cuda>=11.2 brand=tesla,driver>=418,driver<419 brand=tesla,driver>=440,driver<441 driver>=450,driver<451
NCCL_DEBUG_SUBSYS=INIT,ENV,GRAPH
NCCL_DEBUG=INFO
NCCL_SOCKET_IFNAME=xgbe1
CUDA_MODULE_LOADING=LAZY
TORCHINDUCTOR_CACHE_DIR=/tmp/torchinductor_root

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions