Skip to content

Latest commit

 

History

History
executable file
·
147 lines (121 loc) · 3.42 KB

README.md

File metadata and controls

executable file
·
147 lines (121 loc) · 3.42 KB

VSE-HAL

Code release for HAL: Improved Text-Image Matching by Mitigating Visual Semantic Hubs [arxiv] at AAAI 2020.

@inproceedings{liu2020hal,
  title={{HAL}: Improved text-image matching by mitigating visual semantic hubs},
  author={Liu, Fangyu and Ye, Rongtian and Wang, Xun and Li, Shuaipeng},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  volume={34},
  number={07},
  pages={11563--11571},
  year={2020}
}

Upgrade your text-image matching model with a few lines of code:

class ContrastiveLoss(nn.Module):
	...
	def forward(self, im, s, ...):
        	bsize = im.size()[0]
        	scores = self.sim(im, s)
		...
		tmp  = torch.eye(bsize).cuda()
		s_diag = tmp * scores
		scores_ = scores - s_diag
		...
		S_ = torch.exp(self.l_alpha * (scores_ - self.l_ep))
		loss_diag = - torch.log(1 + F.relu(s_diag.sum(0)))

        	loss = torch.sum( \
                	torch.log(1 + S_.sum(0)) / self.l_alpha \
                	+ torch.log(1 + S_.sum(1)) / self.l_alpha \
                	+ loss_diag \
                	) / bsize

        return loss

Dependencies

nltk==3.4.5
pycocotools==2.0.0
numpy==1.18.1
torch==1.5.1
torchvision==0.6.0
tensorboard_logger==0.1.0

Data

MS-COCO

[vgg_precomp]
[resnet_precomp]

Flickr30k

[vgg_precomp]

Train

Run train.py.

MS-COCO

w/o global weighting
python3 train.py \
	--data_path "data/data/resnet_precomp" \
	--vocab_path "data/vocab/" \
	--data_name coco_precomp \
	--batch_size 512 \
	--learning_rate 0.001 \
	--lr_update 8 \
	--num_epochs 13 \
	--img_dim 2048 \
	--logger_name runs/COCO \
	--local_alpha 30.00 \
	--local_ep 0.3
with global weighting
python3 train.py \
	--data_path "data/data/resnet_precomp" \
	--vocab_path "data/vocab/" \
	--data_name coco_precomp \
	--batch_size 512 \
	--learning_rate 0.001 \
	--lr_update 8 \
	--num_epochs 13 \
	--img_dim 2048 \
	--logger_name runs/COCO_mb \
	--local_alpha 30.00 \
	--local_ep 0.3 \
	--memory_bank \
	--global_alpha 40.00 \
	--global_beta 40.00 \
	--global_ep_posi 0.20 \
	--global_ep_nega 0.10 \
 	--mb_rate 0.05 \
	--mb_k 250

Flickr30k

python3 train.py \
	--data_path "data/data" \
	--vocab_path "data/vocab/" \
	--data_name f30k_precomp \
	--batch_size 128 \
	--learning_rate 0.001 \
	--lr_update 8 \
	--num_epochs 13 \
	--logger_name runs/f30k \
	--local_alpha 60.00 \
	--local_ep 0.7

Evaluate

Run compute_results.py.

COCO

python3 compute_results.py --data_path data/data/resnet_precomp --fold5 --model_path runs/COCO/model_best.pth.tar

Flickr30k

python3 compute_results.py --data_path data/data --model_path runs/f30k/model_best.pth.tar

Trained models

[Google Drive]

Note

Trained models and codes for replicating results on SCAN are coming soon.

Acknowledgments

This project would be impossible without the open source implementations of VSE++ and SCAN.

License

Apache License 2.0