-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsentinel2A_classification.js
191 lines (141 loc) · 5.98 KB
/
sentinel2A_classification.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
// Input imagery is a cloud-free Sentinel .
function maskS2clouds(image) {
var qa = image.select('QA60');
// Bits 10 and 11 are clouds and cirrus, respectively.
var cloudBitMask = 1 << 10;
var cirrusBitMask = 1 << 11;
// Both flags should be set to zero, indicating clear conditions.
var mask = qa.bitwiseAnd(cloudBitMask).eq(0)
.and(qa.bitwiseAnd(cirrusBitMask).eq(0));
return image.updateMask(mask);
}
//-------------------------------------------------------------------------
var year_list = ['2016','2017','2018','2019'];
var month_list = ['1half','2half','year_median'];
var aoi_list =['Hyderabad','Gurgaon','Mumbai','Chandigarh','Delhi'];
///// Sentinel Band resolution ------------------
// 10 mtr - B2 B3 B4 B8
// 20 mtr - B5 B6 B7 B8A B11 B12
// 60 mtr - B9 B10 B1
//
//
//
//
//---------------------------------------------
var bands = ['B1','B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'B8','B9', 'B10', 'B11','B12','B8A'];
//var bands = ['B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'B8', 'B11','B12','B8A']; // resolution 10 and 20 mtr
//var bands = ['B2', 'B3', 'B4'];
var india = ee.FeatureCollection('users/hariomahlawat/India_Boundary')
.geometry();
var india_image = ee.ImageCollection('COPERNICUS/S2') // searches all sentinel 2 imagery pixels...
.filterBounds(india)
.filter(ee.Filter.lt("CLOUDY_PIXEL_PERCENTAGE", 1)) // ...filters on the metadata for pixels less than 10% cloud
.filterDate('2019-01-1' ,'2019-05-30') //... chooses only pixels between the dates you define here
.sort('CLOUD_COVER')
.map(maskS2clouds)
.select(bands)
//print(india_image);
var india_image_training_median = india_image.median();
var india_image_training_min = india_image.min();
var india_image_training_max = india_image.max();
//Loading the training dataset
var ft = ee.FeatureCollection('users/hariomahlawat/IndiaSat');
function add_normalized_bands(image){
var ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI'); //vegetaion index
var ndwi = image.normalizedDifference(['B8', 'B12']).rename('NDWI'); //water index
var ndbi = image.normalizedDifference(['B11', 'B8']).rename('NDBI'); //built-up index
return image.addBands(ndvi).addBands(ndwi).addBands(ndbi);
}
function add_all_bands(median_image, min_image, max_image){
return median_image.select('B1','B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'B8','B9', 'B10', 'B11','B12','B8A','NDVI','NDWI','NDBI')
.addBands(min_image.select('B2','B3','B4','NDVI','NDWI','NDBI'))
.addBands(max_image.select('B2','B3','B4','NDVI','NDWI','NDBI'));
}
india_image_training_median = add_normalized_bands(india_image_training_median)
india_image_training_min = add_normalized_bands(india_image_training_min)
india_image_training_max = add_normalized_bands(india_image_training_max)
var india_image_training = add_all_bands(india_image_training_median,
india_image_training_min,
india_image_training_max);
// Training the RF model.
var new_bands = ['B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'B8', 'B11','B12','B8A','NDVI','NDWI','NDBI',
'B2_1','B3_1','B4_1', 'NDVI_1','NDWI_1',
'B2_2','B3_2','B4_2','NDVI_2','NDWI_2'
];
var training = india_image_training.sampleRegions(ft,['class'],30);
var trained = ee.Classifier.randomForest(100).train(training, 'class', new_bands);
//--------------Running the classifier for Area of Interest-----------------------------------------------
for (var i in aoi_list) {
var aoi_name = aoi_list[i];
for (var j in year_list)
{
for (var k in month_list)
{
var month = month_list[k]
var start_month;
var end_month;
var start_date = '01';
var end_date;
if (month == '1half')
{
start_month = '01';
end_date = '30';
end_month = '06';
}
else if (month == '2half')
{
start_month = '07';
end_date = '31';
end_month = '12';
}
else if (month == 'year_median')
{
start_month = '01';
end_date = '31';
end_month = '12';
}
else
{
start_month = month;
end_date = '30';
end_month = month;
}
var year = year_list[j];
var aoi = aoi_list[j];
var aoi = ee.FeatureCollection('users/hariomahlawat/india_district_boundaries')
.filter(ee.Filter.eq('Name',aoi_name));
var aoi_image_toa = ee.ImageCollection('COPERNICUS/S2')
.filterBounds(aoi)
.filterDate(year + '-'+ start_month +'-'+ start_date, year + '-'+ end_month +'-'+ end_date)
.filter(ee.Filter.lt("CLOUDY_PIXEL_PERCENTAGE", 10))
.sort('CLOUD_COVER')
.map(maskS2clouds)
.select(bands);
var aoi_image_median = aoi_image_toa.median();
var aoi_image_min = aoi_image_toa.min();
var aoi_image_max = aoi_image_toa.max();
aoi_image_median = add_normalized_bands(aoi_image_median)
aoi_image_min = add_normalized_bands(aoi_image_min)
aoi_image_max = add_normalized_bands(aoi_image_max)
var aoi_image = add_all_bands(aoi_image_median,
aoi_image_min,
aoi_image_max)
print(aoi_name + ' - ' + year);
print(aoi_image);
var input = aoi_image;
input = input.clip(aoi);
input = input.classify(trained);
input = input.expression('LC',{'LC':input.select('classification')});
var str = aoi_name.replace(/\s/g,''); //remove spaces in the aoi name for naming the downloaded image
var misc = '_'+month
Export.image.toDrive({
image: input.clip(aoi),
description: 'case8_sentinel2a_'+str + '_' + year+misc,
maxPixels: 1e9,
scale: 30,
folder: 'New_Method_Sentinel_Case8_'+str,
region: aoi.geometry().bounds()
});
}
}
}