-
Notifications
You must be signed in to change notification settings - Fork 0
/
euler.js
2352 lines (1888 loc) · 77.4 KB
/
euler.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// helper to generate primes
// (tweaked from problem #26)
function generatePrimes(limit){
var sieve = [], primes = [];
for (var p = 2; p < limit; p++){
if (! sieve[p]) { // check against sieve
primes.push(p); // save and mark this prime
for (var ps = p; ps < limit; ps += p) sieve[ps] = true;
}
}
return primes;
};
var pWorkers = [], pWorkerLimit = 4;
function generateLargePrimes(limit, callback){
if (typeof (Worker) === "undefined") {
throw 'Error: generateLargePrimes requires web workers support.';
}
// clear existing workers
_.invoke(pWorkers, 'terminate');
pWorkers = [];
// initialize all workers
var segment = Math.floor(limit / pWorkerLimit);
for (var w = 0; w < pWorkerLimit; w++){
var pw = new Worker('worker-primes.js');
// initialize worker ranges
var low = w == 0 ? 3 : segment * w
, high = w == (pWorkerLimit - 1) ? limit : segment * (w + 1);
pw.postMessage({init: [low, high]});
pw.low = low; pw.high = high;
// setup prime finder methods
pw.findPrimes = function(callback){
this.addEventListener('message', function(e){
if (e.data.prime !== undefined){ callback(e.data.prime); }
});
this.postMessage({findPrimes: []});
};
pw.markComposites = function(n){
this.postMessage({mark: n});
};
// collect the worker
pWorkers.push(pw);
}
var primes = [2]
, pw = pWorkers.shift();
(function processWorkers(){
if (pw) pw.findPrimes(function(p){
primes = primes.concat(p);
_.invoke(pWorkers, 'markComposites', p);
pw = pWorkers.shift();
processWorkers();
});
else callback(primes);
})();
return pWorkers;
var primes = [2]
, asdf = 0
, sieve = pWorkers[asdf]
, p = 3;
(function testPrime(p){
sieve.cmd('test', [p], function(isPrime){
// console.log(p);
if (isPrime) {
primes.push(p);
_.invoke(pWorkers, 'cmd', 'update', [p]);
// console.log('here');
}
// increment p (check odd-only)
p += 2;
// check if we reached final limit
if (p >= limit){
callback(primes);
return;
}
// check if we need to use next sieve
if (p >= sieve.high) {
// sieve.terminate();
asdf++;
sieve = pWorkers[asdf];
}
// continue testing cycle
testPrime(p);
});
})(p);
return pWorkers;
}
// helper to generate pythagorean triplets
// (tweaked from problem #9)
function generatePyTriples(rLimit){
var triples = []
, r = 2;
// http://bit.ly/1NjcDfw
function givenEvenIntegerR(r){
var key = r * r / 2
, pairs = [];
// find factor-pairs for key
var i = 1, limit = Math.sqrt(key);
while (i < limit){
if (key % i == 0) pairs.push([i, key/i]);
i++;
}
// reduce factor-pairs into py triples
return _.map(pairs, function(n){
return [r+n[0], r+n[1], r+n[0]+n[1]];
});
};
while (r < rLimit){
triples = triples.concat(givenEvenIntegerR(r));
r += 2;
}
return triples;
};
// helper to generate primes map (unlimited)
// (tweaked from generatePrimes)
function generatePrimesStretch(primes, low, high, callback){
return setTimeout(function(){
var sieve = [], newPrimes = [];
for (var i in primes){
var p = primes[i]
, n = Math.floor(low / p) * p;
if (n == 0) break;
for (; n <= high; n += p) sieve[n] = true;
}
for (var p = (low & 1) ? low : (low - 1); p <= high; p += 2){
if (sieve[p] !== true) { // check against sieve
primes.push(p); // save and mark this prime
for (var ps = p+p; ps <= high; ps += p) sieve[ps] = true;
}
}
callback(primes);
}, 0);
};
function generatePrimesHigh(limit, callback){
var seg = 5e6; // segment processing into 5e6 chunks
if (limit <= seg) return generatePrimes(limit);
return setTimeout(function(){
console.log('Generating high primes...');
var primes = generatePrimes(seg)
, parts = Math.ceil(limit / seg)
, startTime = +(new Date());
var low = seg
, high = low + seg
, progress = ((1 / parts) * 100).toFixed(0)
, prog
, part = 2;
var complete = function(){
console.log('Finished generating primes!');
console.log('Total time: '+ ((((+(new Date()) - startTime) / 1000) / 60).toFixed(2)) + 'm');
callback(primes);
};
(function stepStretch(){
generatePrimesStretch(primes, low, high, function(primes){
low = high; high = (high + seg) < limit ? high + seg : limit;
prog = ((part / parts) * 100).toFixed(0);
if (prog !== progress) {
console.log('...' + prog + '%...');
progress = prog;
}
part++;
if (part <= parts) stepStretch();
else complete();
});
})();
}, 0);
};
function confirmProceed(){
return confirm('Warning, this will take a while to calculate, and may crash your browser. Proceed?');
}
var answers = [
function(){ // 1. Multiples of 3 and 5
// brute force solution
var sum = 0, i = 1;
while (i < 1000){
if (i % 3 == 0 || i % 5 == 0) sum += i;
i++;
}
print(sum);
},
function(){ // 2. Even Fibonacci numbers
// brute force (optimized) solution
var fib = [1, 2], sumEven = 0;
while (fib[1] < 4000000){
sumEven += (fib[1] % 2 == 0) ? fib[1] : 0;
fib.push(fib[0]+fib[1]);
fib.shift();
}
print(sumEven);
},
function(){ // 3. Largest prime factor
// brute force solution
var i = 600851475143
, primes = []
, factor = 2;
while (factor <= i){
if (i % factor == 0) {
primes.push(factor);
i = i / factor;
continue;
}
factor++;
}
print(_.max(primes));
},
function(){ // 4. Largest palindrome product
// brute force solution
var n1 = 999
, n2 = 999
, palindromes = []
, palindromesN = [];
var limit = 1;
while (n1 > limit){
// check for palindrome
var pal = ''+(n1 * n2);
if (pal == pal.split('').reverse().join('')) {
palindromes.push(+pal);
palindromesN.push([n1, n2]);
n2--; limit = n1; n1 = n2;
continue;
}
n1--;
if (n1 == limit) {n2--; n1 = n2;}
}
print(_.max(palindromes));
},
function(){ // 5. Smallest multiple
// reduced range set (1-20 = 11-20)
var factors = [20, 19, 18, 17, 16, 15, 14, 13, 12, 11];
var smallestMult = factors[0];
while (
// this is ugly, but shrug.
smallestMult % factors[1] != 0 ||
smallestMult % factors[2] != 0 ||
smallestMult % factors[3] != 0 ||
smallestMult % factors[4] != 0 ||
smallestMult % factors[5] != 0 ||
smallestMult % factors[6] != 0 ||
smallestMult % factors[7] != 0 ||
smallestMult % factors[8] != 0 ||
smallestMult % factors[9] != 0
){
smallestMult += factors[0];
}
print(smallestMult);
},
function(){ // 6. Sum square difference
// plain and simple
var nums = _.range(1, 101)
, sumSq = _.reduce(nums, function(m, n){return m + n*n;}, 0)
, sqSum = Math.pow(_.reduce(nums, function(m, n){return m + n;}, 0), 2);
print(sqSum - sumSq);
},
function(){ // 7. 10001st prime
var primes = [2, 3, 5, 7, 11, 13, 17, 19]; //...
// helper to evaluate prime-ness
function isPrime(n){
for (var i in primes) if (n % primes[i] == 0) return false;
return true;
}
// wheee -- takes few secs to compute.
var p = primes[primes.length - 1] + 1;
while (primes.length < 10001){
if (isPrime(p)) primes.push(p);
p++;
}
print(primes[10000]); // 10001th
},
function(){ // 8. Largest product in a series
var series =
'73167176531330624919225119674426574742355349194934' +
'96983520312774506326239578318016984801869478851843' +
'85861560789112949495459501737958331952853208805511' +
'12540698747158523863050715693290963295227443043557' +
'66896648950445244523161731856403098711121722383113' +
'62229893423380308135336276614282806444486645238749' +
'30358907296290491560440772390713810515859307960866' +
'70172427121883998797908792274921901699720888093776' +
'65727333001053367881220235421809751254540594752243' +
'52584907711670556013604839586446706324415722155397' +
'53697817977846174064955149290862569321978468622482' +
'83972241375657056057490261407972968652414535100474' +
'82166370484403199890008895243450658541227588666881' +
'16427171479924442928230863465674813919123162824586' +
'17866458359124566529476545682848912883142607690042' +
'24219022671055626321111109370544217506941658960408' +
'07198403850962455444362981230987879927244284909188' +
'84580156166097919133875499200524063689912560717606' +
'05886116467109405077541002256983155200055935729725' +
'71636269561882670428252483600823257530420752963450'
, products = [];
var i = 0;
while (i <= series.length - 13){
products.push(_.reduce(series.slice(i, i+13), function(m, n){
return m * n;
}, 1));
i++;
}
print(_.max(products));
},
function(){ // 9. Special Pythagorean triplet
// using Dickson's method to generate triplets (woah.)
// http://bit.ly/1NjcDfw
function triples(r){
var key = r*r/2
, pairs = [];
var i = 1, limit = Math.sqrt(key);
while (i < limit){
if (key % i == 0) pairs.push([i, key/i]);
i++;
}
return _.map(pairs, function(n){
return [r+n[0], r+n[1], r+n[0]+n[1]];
});
}
// keep looking for the magic triplet!
function searchTriples(r){
var T = triples(r);
for (var i in T){
// find the magic triplet
if (T[i][0] + T[i][1] + T[i][2] == 1000) return T[i];
}
return searchTriples(r+2);
}
var theOne = searchTriples(2);
print(theOne[0] * theOne[1] * theOne[2]);
},
function(){ // 10. Summation of primes
// tweaked from problem #7
// optimized w/ sieve concept (cool!)
var sieve = [], primes = [];
// find all primes under two million
var limit = 2000000;
for (var p = 2; p < limit; p++){
if (! sieve[p]) { // check against sieve
primes.push(p);
// mark sieve for this prime
for (var ps = p; ps < limit; ps += p){
sieve[ps] = true;
}
}
}
print(_.reduce(primes, function(m,n){ return n+m; }, 0));
},
function(){ // 11. Largest product in a grid
var grid =
[[08,02,22,97,38,15,00,40,00,75,04,05,07,78,52,12,50,77,91,08],
[49,49,99,40,17,81,18,57,60,87,17,40,98,43,69,48,04,56,62,00],
[81,49,31,73,55,79,14,29,93,71,40,67,53,88,30,03,49,13,36,65],
[52,70,95,23,04,60,11,42,69,24,68,56,01,32,56,71,37,02,36,91],
[22,31,16,71,51,67,63,89,41,92,36,54,22,40,40,28,66,33,13,80],
[24,47,32,60,99,03,45,02,44,75,33,53,78,36,84,20,35,17,12,50],
[32,98,81,28,64,23,67,10,26,38,40,67,59,54,70,66,18,38,64,70],
[67,26,20,68,02,62,12,20,95,63,94,39,63,08,40,91,66,49,94,21],
[24,55,58,05,66,73,99,26,97,17,78,78,96,83,14,88,34,89,63,72],
[21,36,23,09,75,00,76,44,20,45,35,14,00,61,33,97,34,31,33,95],
[78,17,53,28,22,75,31,67,15,94,03,80,04,62,16,14,09,53,56,92],
[16,39,05,42,96,35,31,47,55,58,88,24,00,17,54,24,36,29,85,57],
[86,56,00,48,35,71,89,07,05,44,44,37,44,60,21,58,51,54,17,58],
[19,80,81,68,05,94,47,69,28,73,92,13,86,52,17,77,04,89,55,40],
[04,52,08,83,97,35,99,16,07,97,57,32,16,26,26,79,33,27,98,66],
[88,36,68,87,57,62,20,72,03,46,33,67,46,55,12,32,63,93,53,69],
[04,42,16,73,38,25,39,11,24,94,72,18,08,46,29,32,40,62,76,36],
[20,69,36,41,72,30,23,88,34,62,99,69,82,67,59,85,74,04,36,16],
[20,73,35,29,78,31,90,01,74,31,49,71,48,86,81,16,23,57,05,54],
[01,70,54,71,83,51,54,69,16,92,33,48,61,43,52,01,89,19,67,48]]
, greatestProduct = 0;
// greatest product helper
function gp(n){
var p = n[0] * n[1] * n[2] * n[3];
if (p > greatestProduct) greatestProduct = p;
}
// traverse horizontally
for (var row = 0; row < grid.length; row++){
for (var col = 0; col <= grid[row].length - 4; col++){
gp(grid[row].slice(col, col + 4));
}
}
// traverse vertically
for (var row = 0; row <= grid.length - 4; row++){
for (var col = 0; col < grid[row].length; col++){
gp([grid[row][col], grid[row + 1][col], grid[row + 2][col], grid[row + 3][col]]);
}
}
// traverse diagonally (LR)
for (var row = 0; row <= grid.length - 4; row++){
for (var col = 0; col <= grid[row].length - 4; col++){
gp([grid[row][col], grid[row + 1][col + 1], grid[row + 2][col + 2], grid[row + 3][col + 3]]);
}
}
// traverse diagonally (RL)
for (var row = 0; row <= grid.length - 4; row++){
for (var col = 3; col < grid[row].length; col++){
gp([grid[row][col], grid[row + 1][col - 1], grid[row + 2][col - 2], grid[row + 3][col - 3]]);
}
}
print(greatestProduct);
},
function(){ // 12. Highly divisible triangular number
// generate triangle numbers
function triNumber(n){
return ((n * n) + n) / 2;
}
// check divisors
function overFiveHundredDivisors(n){
var limit = Math.sqrt(n)
, factors = 0;
for (var i = 1; i < limit; i++){
if (n % i == 0) factors++;
}
return factors >= 250;
}
// run through numbers
var i = 1, n = triNumber(i);
while (overFiveHundredDivisors(n) === false) {
i++; n = triNumber(i);
}
print(n);
},
function(){ // 13. Large sum
var nums =
[37107287533902102798797998220837590246510135740250,
46376937677490009712648124896970078050417018260538,
74324986199524741059474233309513058123726617309629,
91942213363574161572522430563301811072406154908250,
23067588207539346171171980310421047513778063246676,
89261670696623633820136378418383684178734361726757,
28112879812849979408065481931592621691275889832738,
44274228917432520321923589422876796487670272189318,
47451445736001306439091167216856844588711603153276,
70386486105843025439939619828917593665686757934951,
62176457141856560629502157223196586755079324193331,
64906352462741904929101432445813822663347944758178,
92575867718337217661963751590579239728245598838407,
58203565325359399008402633568948830189458628227828,
80181199384826282014278194139940567587151170094390,
35398664372827112653829987240784473053190104293586,
86515506006295864861532075273371959191420517255829,
71693888707715466499115593487603532921714970056938,
54370070576826684624621495650076471787294438377604,
53282654108756828443191190634694037855217779295145,
36123272525000296071075082563815656710885258350721,
45876576172410976447339110607218265236877223636045,
17423706905851860660448207621209813287860733969412,
81142660418086830619328460811191061556940512689692,
51934325451728388641918047049293215058642563049483,
62467221648435076201727918039944693004732956340691,
15732444386908125794514089057706229429197107928209,
55037687525678773091862540744969844508330393682126,
18336384825330154686196124348767681297534375946515,
80386287592878490201521685554828717201219257766954,
78182833757993103614740356856449095527097864797581,
16726320100436897842553539920931837441497806860984,
48403098129077791799088218795327364475675590848030,
87086987551392711854517078544161852424320693150332,
59959406895756536782107074926966537676326235447210,
69793950679652694742597709739166693763042633987085,
41052684708299085211399427365734116182760315001271,
65378607361501080857009149939512557028198746004375,
35829035317434717326932123578154982629742552737307,
94953759765105305946966067683156574377167401875275,
88902802571733229619176668713819931811048770190271,
25267680276078003013678680992525463401061632866526,
36270218540497705585629946580636237993140746255962,
24074486908231174977792365466257246923322810917141,
91430288197103288597806669760892938638285025333403,
34413065578016127815921815005561868836468420090470,
23053081172816430487623791969842487255036638784583,
11487696932154902810424020138335124462181441773470,
63783299490636259666498587618221225225512486764533,
67720186971698544312419572409913959008952310058822,
95548255300263520781532296796249481641953868218774,
76085327132285723110424803456124867697064507995236,
37774242535411291684276865538926205024910326572967,
23701913275725675285653248258265463092207058596522,
29798860272258331913126375147341994889534765745501,
18495701454879288984856827726077713721403798879715,
38298203783031473527721580348144513491373226651381,
34829543829199918180278916522431027392251122869539,
40957953066405232632538044100059654939159879593635,
29746152185502371307642255121183693803580388584903,
41698116222072977186158236678424689157993532961922,
62467957194401269043877107275048102390895523597457,
23189706772547915061505504953922979530901129967519,
86188088225875314529584099251203829009407770775672,
11306739708304724483816533873502340845647058077308,
82959174767140363198008187129011875491310547126581,
97623331044818386269515456334926366572897563400500,
42846280183517070527831839425882145521227251250327,
55121603546981200581762165212827652751691296897789,
32238195734329339946437501907836945765883352399886,
75506164965184775180738168837861091527357929701337,
62177842752192623401942399639168044983993173312731,
32924185707147349566916674687634660915035914677504,
99518671430235219628894890102423325116913619626622,
73267460800591547471830798392868535206946944540724,
76841822524674417161514036427982273348055556214818,
97142617910342598647204516893989422179826088076852,
87783646182799346313767754307809363333018982642090,
10848802521674670883215120185883543223812876952786,
71329612474782464538636993009049310363619763878039,
62184073572399794223406235393808339651327408011116,
66627891981488087797941876876144230030984490851411,
60661826293682836764744779239180335110989069790714,
85786944089552990653640447425576083659976645795096,
66024396409905389607120198219976047599490197230297,
64913982680032973156037120041377903785566085089252,
16730939319872750275468906903707539413042652315011,
94809377245048795150954100921645863754710598436791,
78639167021187492431995700641917969777599028300699,
15368713711936614952811305876380278410754449733078,
40789923115535562561142322423255033685442488917353,
44889911501440648020369068063960672322193204149535,
41503128880339536053299340368006977710650566631954,
81234880673210146739058568557934581403627822703280,
82616570773948327592232845941706525094512325230608,
22918802058777319719839450180888072429661980811197,
77158542502016545090413245809786882778948721859617,
72107838435069186155435662884062257473692284509516,
20849603980134001723930671666823555245252804609722,
53503534226472524250874054075591789781264330331690];
var sum = _.reduce(nums, function(m, n){ m+=n; return m;}, 0);
print(String(sum).slice(0,11).replace(/\D/g,''));
},
function(){ // 14. Longest Collatz sequence
// single collatz step
function collatzStep(n){
return (n % 2 == 0) ?
(n / 2) : // n is even
((3 * n) + 1); // n is odd
}
// generates collatz chain
// note: only the length of the chain is returned.
// returning the full chain array is painful
// for garbage collector.
function collatzChainLength(i, kChains){
var n = collatzStep(i)
, chain = [i, n]
, chainLength = false;
while (n !== 1){
n = collatzStep(n);
chain.push(n);
// check for known chain length
if (kChains[n]) {
// chain = chain.concat(kChains[n]); // <== !!!
chainLength = chain.length + kChains[n];
n = 1; // jump to end
}
}
knowChain(chain, kChains);
return chainLength || chain.length; // <== !!!
}
// speed optimization
// note: only the length of the chain is cached.
var knownChains = [];
function knowChain(chain, kChains){
for (var i = 0; i < chain.length; i++){
// if we know the rest of the chain, end early
if (kChains[chain[i]]) break;
// record the chain length
kChains[chain[i]] = chain.slice(i+1).length;
}
}
var i = 2, longestChain = {num: 1, chain: 0};
while (i < 1e6){
var chainLength = collatzChainLength(i, knownChains);
// check against current record holder
if (chainLength > longestChain.chain){
longestChain.num = i;
longestChain.chain = chainLength;
}
i++; // proceed to next number
}
print(longestChain.num);
},
function(){ // 15. Lattice paths
// http://en.wikipedia.org/wiki/Permutation#Permutations_of_multisets
// 2x2 grid = [D,D,R,R] = (4!/2!2!) = 6 routes
// 3x3 grid = [D,D,D,R,R,R] = (6!/3!3!) = 180 routes
// 4x4 grid = [D,D,D,D,R,R,R,R] = (8!/4!4!) = 10080 routes
// therefore..
print(parseInt(math.factorial(40)/(math.factorial(20)*math.factorial(20))));
},
function(){ // 16. Power digit sum
BigNumber.config({ POW_PRECISION: 0 });
var twoPowThousand =
(new BigNumber(2)).toPower(1000).toFixed(0)
, sum = 0;
for (var i in twoPowThousand){
sum += parseInt(twoPowThousand[i]);
}
print(sum);
},
function(){ // 17. Number letter counts
// http://en.wikipedia.org/wiki/List_of_numbers#Small_numbers
var words = {
"1" : "One",
"2" : "Two",
"3" : "Three",
"4" : "Four",
"5" : "Five",
"6" : "Six",
"7" : "Seven",
"8" : "Eight",
"9" : "Nine",
"10" : "Ten",
"11" : "Eleven",
"12" : "Twelve",
"13" : "Thirteen",
"14" : "Fourteen",
"15" : "Fifteen",
"16" : "Sixteen",
"17" : "Seventeen",
"18" : "Eighteen",
"19" : "Nineteen",
"20" : "Twenty",
"30" : "Thirty",
"40" : "Forty",
"50" : "Fifty",
"60" : "Sixty",
"70" : "Seventy",
"80" : "Eighty",
"90" : "Ninety",
"100" : "OneHundred", // space removed
"1000" : "OneThousand" // space removed
}
, sum = 0;
for (var i = 1; i <= 1000; i++){
var n = i;
// process hundredth's place
if (n > 100 && n < 1000) {
sum += words[Math.floor(n/100)].length + 'hundred'.length;
// process ten's/one's place
n = n % 100;
// continue if word fully captured
if (n == 0) continue;
sum += "and".length; // british usage
}
// if we have this direct verbage, add it
if (words[n]){
sum += words[n].length;
// continue since word fully captured
continue;
}
// numbers 21 - 99
if (n >= 21 && n <= 99){
sum += words[Math.floor(n / 10) * 10].length + words[n % 10].length;
}
}
print(sum);
},
function(){ // 18. Maximum path sum I
var triangle =
[[75],
[95, 64],
[17, 47, 82],
[18, 35, 87, 10],
[20, 04, 82, 47, 65],
[19, 01, 23, 75, 03, 34],
[88, 02, 77, 73, 07, 63, 67],
[99, 65, 04, 28, 06, 16, 70, 92],
[41, 41, 26, 56, 83, 40, 80, 70, 33],
[41, 48, 72, 33, 47, 32, 37, 16, 94, 29],
[53, 71, 44, 65, 25, 43, 91, 52, 97, 51, 14],
[70, 11, 33, 28, 77, 73, 17, 78, 39, 68, 17, 57],
[91, 71, 52, 38, 17, 14, 91, 43, 58, 50, 27, 29, 48],
[63, 66, 04, 68, 89, 53, 67, 30, 73, 16, 69, 87, 40, 31],
[04, 62, 98, 27, 23, 09, 70, 98, 73, 93, 38, 53, 60, 04, 23]];
// process triangle bottom-to-top,
// starting with second-to-last row
for (var row = triangle.length - 2; row >= 0; row--){
// update each node with optimal path
for (var n = 0; n < triangle[row].length; n++){
triangle[row][n] +=
triangle[row+1][n] > triangle[row+1][n+1] ?
triangle[row+1][n] :
triangle[row+1][n+1];
}
}
// and finally, just look at the top!
print(triangle[0][0]);
},
function(){ // 19. Counting Sundays
var months = [
31 // jan
, 28 // feb
, 31 // mar
, 30 // apr
, 31 // may
, 30 // jun
, 31 // jul
, 31 // aug
, 30 // sep
, 31 // oct
, 30 // nov
, 31 // dec
]
// 1901-01-01 was a Tuesday
, year = 1901, month = 0
, weekday = 2 // tuesday
// 0 = sunday
// 1 = monday
// ...
// 6 = saturday
, firstSunday = 0;
while (year <= 2000){
while (month < 12){
weekday = (weekday + months[month]) % 7;
if (weekday == 0) firstSunday++;
month++;
}
month = 0;
year++;
}
print(firstSunday);
},
function(){ // 20. Factorial digit sum
var factorial = new BigNumber(1);
for (var i = 100; i > 1; i--){
factorial = factorial.mul(i);
}
var factorial = factorial.toFixed(0), sum = 0;
for (var i in factorial){
sum += +factorial[i];
}
print(sum);
},
function(){ // 21. Amicable numbers
function d(n){
var l = Math.sqrt(n)
, sum = 1;
for (var i = 2; i < l; i++){
if (n % i == 0) sum += i + (n/i);
}
return sum;
}
var sum = 0;
for (var i = 1; i < 10000; i++){
var n = d(i);
if (i !== n &&
i === d(n)) {
sum+= n + i;
}
}
print(sum / 2); // divide by two (numbers counted twice)
},
function(){ // 22. Names scores
var alpha = 'abcdefghijklmnopqrstuvwxyz'.split('');
$.get('src/p022_names.txt', function(data){
print(_.chain(JSON.parse('['+data+']'))
.sortBy()
.reduce(function(m, d, i){
return m + (_.reduce(d.toLowerCase(), function(m, c){
return m + alpha.indexOf(c) + 1;
}, 0) * (i + 1));
}, 0)
.value());
});
},
function(){ // 23. Non-abundant sums
// sum of proper divisors (borrowed from #21)
function d(n){
var l = Math.sqrt(n)
, sum = 1;
for (var i = 2; i < l; i++){
if (n % i == 0) sum += i + (n/i);
}
// omfg, i'm an idiot for missing this:
if (i % l == 0) sum += l;
return sum;
}
// collection of all abundant numbers (up until sum > 28123)
var abInt = [];
for (var i = 2; abInt.length < 2 || abInt[abInt.length - 1] <= 28123; i++){
if (d(i) > i) abInt.push(i);
}
// begin to sum all "cannot .. sum two abundant numbers"
var sum = 0;
for (var i = 1; i <= 28123; i++){
var canAbundant = false;
for (var aI = 0; aI < abInt.length; aI++){
var n = abInt[aI];
if (n > i) break;
// search for corresponding abundant number
if (_.indexOf(abInt, (i - n), true) !== -1) {
canAbundant = true;
break;
}
}
// sum "cannot be written as sum of two abundant numbers"
if (canAbundant === false) {
sum += i;
}
}
print(sum);
},
function(){ // 24. Lexicographic permutations
var digits = _.sortBy([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
function lexiPermutation(permutations, iteration, digits, limit){
// walk through ordered digits,
// generating new permutations
for (var i = 0; i < digits.length; i++){
// quit once we reach one million permutations
if (permutations.length >= limit) break;
// make a working copy
var remainDigits = _.clone(digits)
// work off this digit
, d = remainDigits.splice(i, 1)
// add this digit to end of
// current permutation iteration
, nextIteration = _.clone(iteration).concat(d);
// if there are no digits left,
// save this new iteration
if (remainDigits.length == 0){
permutations.push(nextIteration.join(''));
continue; // and move on
}
// otherwise, recurse with the remaining digits
lexiPermutation(permutations, nextIteration, remainDigits, limit);
}
};
var permutations = [] // collect the permutations