-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathops2.py
541 lines (442 loc) · 16.9 KB
/
ops2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
import itertools
import pickle
import matplotlib
import numpy as np
import tensorflow as tf
from sklearn import datasets
# from pythonsmote.SMOTE import SMOTE
from tensorflow.examples.tutorials.mnist import input_data
matplotlib.use('Agg')
import sys
import matplotlib.cm as cm
import matplotlib.pyplot as plt
import pandas as pd
def save_plots(code, losses, val_losses, lamdas, norms, config):
def _get_labels():
if config.data == 'cifar':
_, labels = CIFAR_data()
labels = labels[:40000]
else:
data = input_data.read_data_sets('data/fashion')
labels = data.train.labels
return labels
labels = _get_labels()
final = np.column_stack((code[:, 0:2], np.asarray(labels)))
final_df = pd.DataFrame(final, columns=['pc1', 'pc2', 'targets'])
final_df.head()
fig = plt.figure(figsize = (25,25))
ax = fig.add_subplot(2,2,1)
ax.set_xlabel(' Component 1', fontsize = 15)
ax.set_ylabel(' Component 2', fontsize = 15)
ax.set_title('Code components ', fontsize = 15)
targets = set(labels)
colors = cm.rainbow(np.linspace(0, 1, 10))
for target, color in zip(targets,colors):
indicesToKeep = final_df['targets'] == target
ax.scatter(final_df.loc[indicesToKeep, 'pc1']
, final_df.loc[indicesToKeep, 'pc2']
, c = color
, s = 50)
ax.legend(targets)
ax.grid()
ax2 = fig.add_subplot(2,2,2)
ax2.plot(losses)
ax2.set_title('Reconstruction Loss', fontsize=15)
ax2.set_xlabel('Global steps', fontsize=15)
ax2.set_ylabel(' Loss', fontsize=15)
ax3 = fig.add_subplot(2,2,3)
ax3.plot(lamdas)
ax3.set_title('lambda steps', fontsize=15)
ax3.set_xlabel('Global steps', fontsize=15)
ax3.set_ylabel('lambda', fontsize=15)
ax4 = fig.add_subplot(2,2,4)
ax4.plot(val_losses)
ax4.set_title('val_loss', fontsize=15)
ax4.set_xlabel('Global steps', fontsize=15)
ax4.set_ylabel('val_loss', fontsize=15)
fig.savefig('./results/' + str(config.omega_exp) + '/' + str(config.use_act) + '.png')
plt.close()
return
def C_SMOTE(T,fill_points,alpha,k=25):
N = 1
#fill_points = 50
smote = SMOTE(T,N,k,fill_points,alpha)
synth = smote.over_sampling()
#print('# Synth Samps: ', synth.shape)
return synth
def center_data(X):
mean_x = np.mean(X, axis=0, keepdims=True)
reduced_mean = np.subtract(X,mean_x)
reduced_mean = reduced_mean.astype(np.float32)
return reduced_mean
def parity_batch(input_length, batch_size):
xs = [np.random.randint(0, 2, input_length) for _ in range(batch_size)]
xs.append(np.ones(shape=input_length, dtype=int))
ys = [[0] if np.sum(x) % 2 == 0 else [1] for x in xs]
return xs, ys
def get_batch_with_labels(num, data, labels):
'''
Return a total of `num` random samples and labels.
'''
idx = np.arange(0 , len(data))
np.random.shuffle(idx)
idx = idx[:num]
data_shuffle = [data[ i] for i in idx]
labels_shuffle = [labels[ i] for i in idx]
return np.asarray(data_shuffle), np.asarray(labels_shuffle)
def get_batch(num, data):
'''
Return a total of `num` random samples and labels.
'''
idx = np.arange(0 , len(data))
#print(data.shape)
np.random.shuffle(idx)
idx = idx[:num]
data_shuffle = [data[ i] for i in idx]
return np.asarray(data_shuffle)
def get_data(data, fill_points, a_, config):
if data == 'sine':
X_o = SINE_data()
X_o = center_data(X_o)
X = C_SMOTE(X_o,fill_points,a_)
d_dim = 2
code_dim = 1
return X,X_o, d_dim, code_dim
#X2 = C_SMOTE(X_o,fill_points,0.5)
elif data == 'mnist':
X = np.asarray(MNIST_data())
#X = X / 255.0
d_dim = 784
code_dim = 2
return X, d_dim, code_dim
elif data == 'fashion':
X, X_val = np.asarray(FASHION_data())
#X = X / 255.0
d_dim = 784
code_dim = 2
#X = center_data(X)
return X, X_val, d_dim, code_dim
elif data == 'cifar':
X, _ = CIFAR_data()
X = X / 255.0
d_dim = 3072
code_dim = 2
X1 = X[:40000]
X_val = X[-10000:]
print(X1.shape, X_val.shape)
del X
return X1, X_val, d_dim, code_dim
elif data == 'parity':
d_dim = config.parity_length
X, y = parity_batch(config.parity_length, 200000)
X_val, y_val = parity_batch(config.parity_length, 50000)
return X, y, X_val, y_val, d_dim
elif data == 'swiss':
X_o = SWISS_data()
#X_o = 1 / (1 + np.exp(-1* X_o))
X = C_SMOTE(X_o,fill_points,a_,k=50)
d_dim = 3
code_dim = 2
return X, X_o, d_dim, code_dim
elif data == 'grid':
X_o = GRID_data()
X = C_SMOTE(X_o,fill_points,a_,k=50)
#X = 1 / (1 + np.exp(-1* X))
d_dim = 2
code_dim = 2
return X, d_dim, code_dim
else :
sys.exit()
def SWISS_data():
X = datasets.make_swiss_roll(n_samples=1000, noise=0.0, random_state=0)[0]
return X
def MNIST_data():
mnist = input_data.read_data_sets("./MNIST_data")
return mnist.train.images
def FASHION_data():
data = input_data.read_data_sets('data/fashion')
return data.train.images, data.test.images
def load_cfar10_batch(cifar10_dataset_folder_path, batch_id):
with open(cifar10_dataset_folder_path + '/data_batch_' + str(batch_id), mode='rb') as file:
# note the encoding type is 'latin1'
batch = pickle.load(file, encoding='latin1')
features = batch['data'].reshape((len(batch['data']), 3, 32, 32)).transpose(0, 2, 3, 1)
features = features.reshape((len(batch['data']), 3 * 32 * 32))
print('f', features.shape)
labels = batch['labels']
return features, labels
def CIFAR_data():
images_array, image_labels = load_cfar10_batch(cifar10_dataset_folder_path='../data/cifar', batch_id=1)
for i in range(2, 6):
images_array1, image_labels1 = load_cfar10_batch(cifar10_dataset_folder_path='../data/cifar', batch_id=i)
images_array = np.concatenate((images_array, images_array1), axis=0)
image_labels = np.concatenate((image_labels, image_labels1), axis=0)
return images_array, image_labels
def GRID_data():
grid = np.array([np.array([i, j]) for i, j in
itertools.product(np.linspace(-2, 2, 5),
np.linspace(-2, 2, 5))],dtype=np.float32)
return grid
def SINE_data():
fs = 100 # sample rate
f = 4 # the frequency of the signal
x = np.arange(fs) # the points on the x axis for plotting
# compute the value (amplitude) of the sin wave at the for each sample
y = np.asarray([ np.sin(2*np.pi*f * (i/fs)) for i in x])
X = np.stack((x,y), axis=0)
#X = np.abs(X.T)
X = X.T
#print(X.shape)
return X
def copy_g(a,b):
temp = []
for i,j in zip(a,b):
k = tf.assign(j,i)
temp.append(k)
return temp
def diff_l(a,b,config):
temp = []
for i,j in zip(a,b):
k = tf.assign(j, (i -j))
temp.append(k)
return temp
def secant_l(a,b,config):
temp = []
for i,t in zip(a,b):
k = tf.assign(i, i + ((config.delta_l/config.delta_l_prev)*t) )
temp.append(k)
return temp
def secant_lambda(a,b,config):
c = []
c1 = []
norm_list = []
for i,j in zip(a,b):
k = tf.assign(j, (i -j))
c.append(k)
for i,t in zip(a,c):
k = tf.assign(i, i + tf.multiply((config.delta_l/config.delta_l_prev), t) )
c1.append(k)
del c, norm_list
return c1
def secant_g(a,b,l,lnorm,omega):
c = []
c1 = []
norm_list = []
for i,j in zip(a,b):
norm_list.append(tf.reduce_sum(tf.square(i-j)))
k = tf.assign(j, (i -j))
c.append(k)
theta_norm = tf.add_n(norm_list)
# or b
for i,t in zip(a,c):
k = tf.assign(i, i + tf.multiply( (omega ), tf.div(t , tf.sqrt(theta_norm + lnorm) ) ) )
#k = tf.assign(i , tf.div(i, 100))
c1.append(k)
del c, norm_list
return c1, theta_norm
def secant_g2(a,b,l,lnorm,omega):
c = []
c1 = []
norm_list = []
for i,j in zip(a,b):
norm_list.append(tf.reduce_sum(tf.square(i-j)))
k = tf.assign(j, (i -j) )
c.append(k)
theta_norm = tf.add_n(norm_list) #np.sum(norm_list)
# or b
for i,t in zip(a,c):
k = tf.assign(i, i + tf.multiply( (omega ), tf.div(t , tf.sqrt(theta_norm + lnorm) ) ) )
#k = tf.assign(i , tf.div(i, 100))
c1.append(k)
del c, norm_list
return c1, theta_norm
def etlinear(input_, output_size,ev,code_dim=2,n=5, scope = None, stddev=0.5, bias_start=0.0001):
shape = input_.get_shape().as_list()
with tf.variable_scope(scope or "Linear"):
if scope == 'encoder1':
w = ev.T[:,:200]
elif scope == 'encoder2':
w = ev.T[:200,:100]
elif scope == 'encoder3':
w = ev.T[:100,:50]
elif scope == 'code':
w = ev.T[:50,:2]
elif scope == 'decoder3':
w = (ev.T[:50,:2]).T
elif scope == 'decoder2':
w = (ev.T[:100,:50]).T
elif scope == 'decoder1':
w = (ev.T[:200,:100]).T
elif scope == 'output':
w = (ev.T[:,:200]).T
w = np.asarray(w).reshape(shape[1],output_size)
matrix = tf.get_variable("Matrix", [shape[1], output_size], tf.float32, initializer=tf.constant_initializer(w))
bias = tf.get_variable("bias", [output_size], initializer=tf.constant_initializer(bias_start))
return tf.matmul(input_, matrix) + bias
def get_v_n(X):
_,_,ev200 = np.linalg.svd(X, full_matrices=False)
l1 = np.dot(X, ev200.T[:,:200])
_,_,ev100 = np.linalg.svd(l1, full_matrices=False)
l2 = np.dot(l1, ev100.T[:,:100])
_,_,ev50 = np.linalg.svd(l2, full_matrices=False)
l3 = np.dot(l2, ev50.T[:,:50])
_,_,ev2 = np.linalg.svd(l3, full_matrices=False)
ev = {'ev200':ev200,'ev100':ev100,'ev50':ev50,'ev2':ev2}
return ev
def get_v_n16(X):
_,_,ev500 = np.linalg.svd(X, full_matrices=False)
l1 = np.dot(X, ev500.T[:,:500])
_,_,ev200 = np.linalg.svd(l1, full_matrices=False)
l2 = np.dot(l1, ev200.T[:,:200])
_,_,ev100 = np.linalg.svd(l2, full_matrices=False)
l3 = np.dot(l2, ev100.T[:,:100])
_,_,ev50 = np.linalg.svd(l3, full_matrices=False)
l4 = np.dot(l3, ev50.T[:,:50])
_,_,ev50_ = np.linalg.svd(l4, full_matrices=False)
l5 = np.dot(l4, ev50_.T[:,:50])
_,_,ev5 = np.linalg.svd(l5, full_matrices=False)
l6 = np.dot(l5, ev5.T[:,:5])
_,_,ev5_ = np.linalg.svd(l6, full_matrices=False)
l7 = np.dot(l6, ev5_.T[:,:5])
_,_,ev2 = np.linalg.svd(l7, full_matrices=False)
ev = {'ev500':ev500, 'ev200':ev200, 'ev100':ev100, 'ev50':ev50, 'ev50_':ev50_, 'ev5':ev5, 'ev5_':ev5_, 'ev2':ev2}
return ev
def etlinear2(input_, output_size,ev,code_dim=2,n=5, scope = None, stddev=0.5, bias_start=0.0001):
shape = input_.get_shape().as_list()
with tf.variable_scope(scope or "Linear"):
if scope == 'encoder1':
w = ev.get('ev200').T[:,:200]
elif scope == 'encoder2':
w = ev.get('ev100').T[:,:100]
elif scope == 'encoder3':
w = ev.get('ev50').T[:,:50]
elif scope == 'code':
w = ev.get('ev2').T[:,:2]
elif scope == 'decoder3':
w = (ev.get('ev2').T[:,:2]).T
elif scope == 'decoder2':
w = (ev.get('ev50').T[:,:50]).T
elif scope == 'decoder1':
w = (ev.get('ev100').T[:,:100]).T
elif scope == 'output':
w = (ev.get('ev200').T[:,:200]).T
w = np.asarray(w).reshape(shape[1],output_size)
matrix = tf.get_variable("Matrix", [shape[1], output_size], tf.float32, initializer=tf.constant_initializer(w))
bias = tf.get_variable("bias", [output_size], initializer=tf.constant_initializer(bias_start))
return tf.matmul(input_, matrix) + bias
def stlinear2(input_, output_size,ev,code_dim=2,n=5, scope = None, stddev=0.5, bias_start=0.0001):
shape = input_.get_shape().as_list()
with tf.variable_scope(scope or "Linear"):
if scope == 'encoder1':
w = ev.get('ev500').T[:,:500]
elif scope == 'encoder2':
w = ev.get('ev200').T[:,:200]
elif scope == 'encoder3':
w = ev.get('ev100').T[:,:100]
elif scope == 'encoder4':
w = ev.get('ev50').T[:,:50]
elif scope == 'encoder5':
w = ev.get('ev50_').T[:,:50]
elif scope == 'encoder6':
w = ev.get('ev5').T[:,:5]
elif scope == 'encoder7':
w = ev.get('ev5_').T[:,:5]
elif scope == 'code':
w = ev.get('ev2').T[:,:2]
elif scope == 'decoder7':
w = (ev.get('ev2').T[:,:2]).T
elif scope == 'decoder6':
w = (ev.get('ev5_').T[:,:5]).T
elif scope == 'decoder5':
w = (ev.get('ev5').T[:,:5]).T
elif scope == 'decoder4':
w = (ev.get('ev50_').T[:,:50]).T
elif scope == 'decoder3':
w = (ev.get('ev50').T[:,:50]).T
elif scope == 'decoder2':
w = (ev.get('ev100').T[:,:100]).T
elif scope == 'decoder1':
w = (ev.get('ev200').T[:,:200]).T
elif scope == 'output':
w = (ev.get('ev500').T[:,:500]).T
w = np.asarray(w).reshape(shape[1],output_size)
matrix = tf.get_variable("Matrix", [shape[1], output_size], tf.float32, initializer=tf.constant_initializer(w))
bias = tf.get_variable("bias", [output_size], initializer=tf.constant_initializer(bias_start))
return tf.matmul(input_, matrix) + bias
## Continuous logit
def c_sigmoid(v, l):
#print('real l', str(l))
c = ((1-l)*v) + (l * tf.nn.sigmoid(v))
return c
def c_relu(v, l):
c = ((1-l)*v) + (l * tf.nn.relu(v))
return c
def c_tanh(v,l):
c = ((1-l)*v) + (l * tf.nn.tanh(v))
return c
def activation(act_key, v, l):
if act_key == "sigmoid":
return tf.nn.sigmoid(v)
elif act_key == "relu":
return tf.nn.relu(v)
elif act_key == "c_sigmoid":
return c_sigmoid(v, l)
elif act_key == "c_relu":
return c_relu(v, l)
elif act_key == "c_tanh":
return c_tanh(v, l)
elif act_key == "tanh":
return tf.nn.tanh(v)
elif act_key =="sin":
return tf.sin(v)
else :
return v
def adaptive_lambda(config,step,norms):
if (step > config.adaptive_threshold) and (step > config.u_freq) and (step > config.adaptive_start):
avg_p = np.mean(norms[-(2*config.adaptive_threshold):-config.adaptive_threshold])
avg_c = np.mean(norms[-config.adaptive_threshold:])
if avg_p == 0:
avg_p = 0.2
if ( (avg_c - avg_p) / avg_p ) < -config.norm_strict:
config.delta_l = config.delta_l*(1.5)
#config.u_freq = config.u_freq - config.u_freq_delta
if config.delta_l >= config.delta_l_max:
config.delta_l = config.delta_l_max
if config.u_freq <=config.u_freq_min:
config.u_freq = config.u_freq_min
elif ( (avg_c - avg_p) / avg_p ) >= config.norm_strict:
config.delta_l = config.delta_l/2
#config.u_freq = config.u_freq + config.u_freq_delta
if config.delta_l <= config.delta_l_min:
config.delta_l = config.delta_l_min
if config.u_freq >= config.u_freq_max:
config.u_freq = config.u_freq_max
else:
pass
if max(norms[-config.adaptive_threshold:]) >= 0.25: # 5
config.delta_l = config.delta_l/2
if config.delta_l <= config.delta_l_min:
config.delta_l = config.delta_l_min
return config.delta_l
def adaptive(config,step,losses):
if (step > config.adaptive_threshold) and (step > config.u_freq):
#m_ = m_- ( np.sign((closs - sum(losses[-l_freq:])/l_freq )/closs) )* 0.10
avg_p = np.mean(losses[-(2*config.adaptive_threshold):-config.adaptive_threshold])
avg_c = np.mean(losses[-config.adaptive_threshold:])
if ( (avg_c - avg_p) / avg_p ) < -config.loss_strict:
config.omega = config.omega + config.omega_delta
config.u_freq = config.u_freq - config.u_freq_delta
if config.omega >= config.omega_max:
config.omega = config.omega_max
if config.u_freq <=config.u_freq_min:
config.u_freq = config.u_freq_min
elif ( (avg_c - avg_p) / avg_p ) >= config.loss_strict:
config.omega = config.omega - config.omega_delta
config.u_freq = config.u_freq + config.u_freq_delta
if config.omega <= config.omega_min:
config.omega = config.omega_min
if config.u_freq >= config.u_freq_max:
config.u_freq = config.u_freq_max
else:
pass
return config.omega, config.u_freq