-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSuicide Analysis.twb
1319 lines (1318 loc) · 87.5 KB
/
Suicide Analysis.twb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<?xml version='1.0' encoding='utf-8' ?>
<!-- build 20203.20.1110.1623 -->
<workbook original-version='18.1' source-build='2020.3.3 (20203.20.1110.1623)' source-platform='win' version='18.1' xmlns:user='http://www.tableausoftware.com/xml/user'>
<document-format-change-manifest>
<MapboxVectorStylesAndLayers />
<_.fcp.MarkAnimation.true...MarkAnimation />
<_.fcp.ObjectModelEncapsulateLegacy.true...ObjectModelEncapsulateLegacy />
<_.fcp.ObjectModelTableType.true...ObjectModelTableType />
<_.fcp.SchemaViewerObjectModel.true...SchemaViewerObjectModel />
<SheetIdentifierTracking />
<WindowsPersistSimpleIdentifiers />
</document-format-change-manifest>
<preferences>
<preference name='ui.encoding.shelf.height' value='24' />
<preference name='ui.shelf.height' value='26' />
</preferences>
<datasources>
<datasource caption='Suicide Data - Cleaned' inline='true' name='federated.13ghfoq1jnub0h1377xim0h4uj9x' version='18.1'>
<connection class='federated'>
<named-connections>
<named-connection caption='Suicide Data - Cleaned' name='google-sheets.07o0zxc1f49z4r17wlngg10lt63j'>
<connection class='google-sheets' cleaning='no' compat='no' dataRefreshTime='' filename='Suicide Data - Cleaned' googleSheetId='1R1qJILDSalKbvA-sIUShXOho8nFNqZnaXEvaXKT9yDM' interpretationMode='8' mimeType='application/vnd.google-apps.spreadsheet' server='' server-oauth='' username='harsh.seksaria@cs.christuniversity.in' validate='no' />
</named-connection>
</named-connections>
<_.fcp.ObjectModelEncapsulateLegacy.false...relation connection='google-sheets.07o0zxc1f49z4r17wlngg10lt63j' name='Cleaned' table='[Cleaned$]' type='table'>
<columns gridOrigin='A1:G10001:no:A1:G10001:0' header='yes' outcome='2'>
<column datatype='string' name='State' ordinal='0' />
<column datatype='integer' name='Year' ordinal='1' />
<column datatype='string' name='Type_code' ordinal='2' />
<column datatype='string' name='Type' ordinal='3' />
<column datatype='string' name='Gender' ordinal='4' />
<column datatype='string' name='Age_group' ordinal='5' />
<column datatype='integer' name='Total' ordinal='6' />
</columns>
</_.fcp.ObjectModelEncapsulateLegacy.false...relation>
<_.fcp.ObjectModelEncapsulateLegacy.true...relation connection='google-sheets.07o0zxc1f49z4r17wlngg10lt63j' name='Cleaned' table='[Cleaned$]' type='table'>
<columns gridOrigin='A1:G10001:no:A1:G10001:0' header='yes' outcome='2'>
<column datatype='string' name='State' ordinal='0' />
<column datatype='integer' name='Year' ordinal='1' />
<column datatype='string' name='Type_code' ordinal='2' />
<column datatype='string' name='Type' ordinal='3' />
<column datatype='string' name='Gender' ordinal='4' />
<column datatype='string' name='Age_group' ordinal='5' />
<column datatype='integer' name='Total' ordinal='6' />
</columns>
</_.fcp.ObjectModelEncapsulateLegacy.true...relation>
<metadata-records>
<metadata-record class='capability'>
<remote-name />
<remote-type>0</remote-type>
<parent-name>[Cleaned]</parent-name>
<remote-alias />
<aggregation>Count</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='context'>0</attribute>
<attribute datatype='string' name='gridOrigin'>"A1:G10001:no:A1:G10001:0"</attribute>
<attribute datatype='boolean' name='header'>true</attribute>
<attribute datatype='integer' name='outcome'>2</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>State</remote-name>
<remote-type>130</remote-type>
<local-name>[State]</local-name>
<parent-name>[Cleaned]</parent-name>
<remote-alias>State</remote-alias>
<ordinal>0</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<contains-null>true</contains-null>
<collation flag='1' name='LEN_RIN_S2' />
<attributes>
<attribute datatype='string' name='DebugRemoteType'>"WSTR"</attribute>
</attributes>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Cleaned_3B8D42ACF0284EB6974D801F991592A3]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>Year</remote-name>
<remote-type>20</remote-type>
<local-name>[Year]</local-name>
<parent-name>[Cleaned]</parent-name>
<remote-alias>Year</remote-alias>
<ordinal>1</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='string' name='DebugRemoteType'>"I8"</attribute>
</attributes>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Cleaned_3B8D42ACF0284EB6974D801F991592A3]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>Type_code</remote-name>
<remote-type>130</remote-type>
<local-name>[Type_code]</local-name>
<parent-name>[Cleaned]</parent-name>
<remote-alias>Type_code</remote-alias>
<ordinal>2</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<contains-null>true</contains-null>
<collation flag='1' name='LEN_RIN_S2' />
<attributes>
<attribute datatype='string' name='DebugRemoteType'>"WSTR"</attribute>
</attributes>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Cleaned_3B8D42ACF0284EB6974D801F991592A3]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>Type</remote-name>
<remote-type>130</remote-type>
<local-name>[Type]</local-name>
<parent-name>[Cleaned]</parent-name>
<remote-alias>Type</remote-alias>
<ordinal>3</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<contains-null>true</contains-null>
<collation flag='1' name='LEN_RIN_S2' />
<attributes>
<attribute datatype='string' name='DebugRemoteType'>"WSTR"</attribute>
</attributes>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Cleaned_3B8D42ACF0284EB6974D801F991592A3]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>Gender</remote-name>
<remote-type>130</remote-type>
<local-name>[Gender]</local-name>
<parent-name>[Cleaned]</parent-name>
<remote-alias>Gender</remote-alias>
<ordinal>4</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<contains-null>true</contains-null>
<collation flag='1' name='LEN_RIN_S2' />
<attributes>
<attribute datatype='string' name='DebugRemoteType'>"WSTR"</attribute>
</attributes>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Cleaned_3B8D42ACF0284EB6974D801F991592A3]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>Age_group</remote-name>
<remote-type>130</remote-type>
<local-name>[Age_group]</local-name>
<parent-name>[Cleaned]</parent-name>
<remote-alias>Age_group</remote-alias>
<ordinal>5</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<contains-null>true</contains-null>
<collation flag='1' name='LEN_RIN_S2' />
<attributes>
<attribute datatype='string' name='DebugRemoteType'>"WSTR"</attribute>
</attributes>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Cleaned_3B8D42ACF0284EB6974D801F991592A3]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>Total</remote-name>
<remote-type>20</remote-type>
<local-name>[Total]</local-name>
<parent-name>[Cleaned]</parent-name>
<remote-alias>Total</remote-alias>
<ordinal>6</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='string' name='DebugRemoteType'>"I8"</attribute>
</attributes>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Cleaned_3B8D42ACF0284EB6974D801F991592A3]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
</metadata-records>
</connection>
<aliases enabled='yes' />
<column caption='Age group' datatype='string' name='[Age_group]' role='dimension' type='nominal' />
<column datatype='string' name='[State]' role='dimension' semantic-role='[State].[Name]' type='nominal'>
<semantic-values semantic-role='[State].[Name]'>
<semantic-value key='"A & N Islands"' value='"Andaman & Nicobar Islands"' />
<semantic-value key='"D & N Haveli"' value='"Dadra and Nagar Haveli"' />
<semantic-value key='"Delhi (Ut)"' value='"Delhi"' />
</semantic-values>
</column>
<column caption='Type code' datatype='string' name='[Type_code]' role='dimension' type='nominal' />
<column datatype='integer' name='[Year]' role='dimension' type='quantitative' />
<_.fcp.ObjectModelTableType.true...column caption='Cleaned' datatype='table' name='[__tableau_internal_object_id__].[Cleaned_3B8D42ACF0284EB6974D801F991592A3]' role='measure' type='quantitative' />
<layout _.fcp.SchemaViewerObjectModel.false...dim-percentage='0.5' _.fcp.SchemaViewerObjectModel.false...measure-percentage='0.4' dim-ordering='alphabetic' measure-ordering='alphabetic' rowDisplayCount='1000' show-structure='true' />
<semantic-values>
<semantic-value key='[Country].[Name]' value='"India"' />
</semantic-values>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-graph>
<objects>
<object caption='Cleaned' id='Cleaned_3B8D42ACF0284EB6974D801F991592A3'>
<properties context=''>
<relation connection='google-sheets.07o0zxc1f49z4r17wlngg10lt63j' name='Cleaned' table='[Cleaned$]' type='table'>
<columns gridOrigin='A1:G10001:no:A1:G10001:0' header='yes' outcome='2'>
<column datatype='string' name='State' ordinal='0' />
<column datatype='integer' name='Year' ordinal='1' />
<column datatype='string' name='Type_code' ordinal='2' />
<column datatype='string' name='Type' ordinal='3' />
<column datatype='string' name='Gender' ordinal='4' />
<column datatype='string' name='Age_group' ordinal='5' />
<column datatype='integer' name='Total' ordinal='6' />
</columns>
</relation>
</properties>
</object>
</objects>
</_.fcp.ObjectModelEncapsulateLegacy.true...object-graph>
</datasource>
</datasources>
<mapsources>
<mapsource name='Tableau' />
</mapsources>
<worksheets>
<worksheet name='Heat Map'>
<layout-options>
<title>
<formatted-text>
<run>Number of Suicides in Indian States</run>
</formatted-text>
</title>
</layout-options>
<table>
<view>
<datasources>
<datasource caption='Suicide Data - Cleaned' name='federated.13ghfoq1jnub0h1377xim0h4uj9x' />
</datasources>
<mapsources>
<mapsource name='Tableau' />
</mapsources>
<datasource-dependencies datasource='federated.13ghfoq1jnub0h1377xim0h4uj9x'>
<column datatype='string' name='[State]' role='dimension' semantic-role='[State].[Name]' type='nominal'>
<semantic-values semantic-role='[State].[Name]'>
<semantic-value key='"A & N Islands"' value='"Andaman & Nicobar Islands"' />
<semantic-value key='"D & N Haveli"' value='"Dadra and Nagar Haveli"' />
<semantic-value key='"Delhi (Ut)"' value='"Delhi"' />
</semantic-values>
</column>
<column datatype='integer' name='[Total]' role='measure' type='quantitative' />
<column-instance column='[State]' derivation='None' name='[none:State:nk]' pivot='key' type='nominal' />
<column-instance column='[Total]' derivation='Sum' name='[sum:Total:qk]' pivot='key' type='quantitative' />
</datasource-dependencies>
<aggregation value='true' />
</view>
<style>
<style-rule element='map'>
<format attr='washout' value='0.0' />
</style-rule>
</style>
<panes>
<pane selection-relaxation-option='selection-relaxation-allow'>
<view>
<breakdown value='auto' />
</view>
<mark class='Multipolygon' />
<encodings>
<color column='[federated.13ghfoq1jnub0h1377xim0h4uj9x].[sum:Total:qk]' />
<lod column='[federated.13ghfoq1jnub0h1377xim0h4uj9x].[none:State:nk]' />
<geometry column='[federated.13ghfoq1jnub0h1377xim0h4uj9x].[Geometry (generated)]' />
</encodings>
<style>
<style-rule element='mark'>
<format attr='mark-labels-cull' value='true' />
<format attr='mark-labels-show' value='false' />
</style-rule>
</style>
</pane>
</panes>
<rows>[federated.13ghfoq1jnub0h1377xim0h4uj9x].[Latitude (generated)]</rows>
<cols>[federated.13ghfoq1jnub0h1377xim0h4uj9x].[Longitude (generated)]</cols>
</table>
<simple-id uuid='{750A7141-E328-44AA-8002-A1C85FD4CBCD}' />
</worksheet>
<worksheet name='Suicides/Reason'>
<layout-options>
<title>
<formatted-text>
<run>Total suicides for each reason</run>
</formatted-text>
</title>
</layout-options>
<table>
<view>
<datasources>
<datasource caption='Suicide Data - Cleaned' name='federated.13ghfoq1jnub0h1377xim0h4uj9x' />
</datasources>
<datasource-dependencies datasource='federated.13ghfoq1jnub0h1377xim0h4uj9x'>
<column datatype='integer' name='[Total]' role='measure' type='quantitative' />
<column datatype='string' name='[Type]' role='dimension' type='nominal' />
<column-instance column='[Type]' derivation='None' name='[none:Type:nk]' pivot='key' type='nominal' />
<column-instance column='[Total]' derivation='Sum' name='[sum:Total:qk]' pivot='key' type='quantitative' />
</datasource-dependencies>
<aggregation value='true' />
</view>
<style />
<panes>
<pane selection-relaxation-option='selection-relaxation-allow'>
<view>
<breakdown value='auto' />
</view>
<mark class='Automatic' />
<style>
<style-rule element='pane'>
<format attr='minwidth' value='-1' />
<format attr='maxwidth' value='-1' />
</style-rule>
</style>
</pane>
</panes>
<rows>[federated.13ghfoq1jnub0h1377xim0h4uj9x].[sum:Total:qk]</rows>
<cols>[federated.13ghfoq1jnub0h1377xim0h4uj9x].[none:Type:nk]</cols>
</table>
<simple-id uuid='{21631A3C-BC93-4C8D-B3E8-7A04A9095DAF}' />
</worksheet>
<worksheet name='Yearly Suicide'>
<layout-options>
<title>
<formatted-text>
<run>Yearly Suicide</run>
</formatted-text>
</title>
</layout-options>
<table>
<view>
<datasources>
<datasource caption='Suicide Data - Cleaned' name='federated.13ghfoq1jnub0h1377xim0h4uj9x' />
</datasources>
<datasource-dependencies datasource='federated.13ghfoq1jnub0h1377xim0h4uj9x'>
<column datatype='integer' name='[Total]' role='measure' type='quantitative' />
<column datatype='integer' name='[Year]' role='dimension' type='quantitative' />
<column-instance column='[Year]' derivation='None' name='[none:Year:qk]' pivot='key' type='quantitative' />
<column-instance column='[Total]' derivation='Sum' name='[sum:Total:qk]' pivot='key' type='quantitative' />
</datasource-dependencies>
<aggregation value='true' />
</view>
<style />
<panes>
<pane selection-relaxation-option='selection-relaxation-allow'>
<view>
<breakdown value='auto' />
</view>
<mark class='Automatic' />
<encodings>
<text column='[federated.13ghfoq1jnub0h1377xim0h4uj9x].[sum:Total:qk]' />
</encodings>
<style>
<style-rule element='mark'>
<format attr='mark-labels-show' value='true' />
<format attr='mark-labels-cull' value='true' />
<format attr='mark-color' value='#b07aa1' />
</style-rule>
</style>
</pane>
</panes>
<rows>[federated.13ghfoq1jnub0h1377xim0h4uj9x].[sum:Total:qk]</rows>
<cols>[federated.13ghfoq1jnub0h1377xim0h4uj9x].[none:Year:qk]</cols>
</table>
<simple-id uuid='{D832607B-38A8-40E5-8BDB-BAA035AB5E55}' />
</worksheet>
</worksheets>
<windows source-height='30'>
<window class='worksheet' maximized='true' name='Heat Map'>
<cards>
<edge name='left'>
<strip size='160'>
<card type='pages' />
<card type='filters' />
<card type='marks' />
</strip>
</edge>
<edge name='top'>
<strip size='2147483647'>
<card type='columns' />
</strip>
<strip size='2147483647'>
<card type='rows' />
</strip>
<strip size='31'>
<card type='title' />
</strip>
</edge>
<edge name='right'>
<strip size='160'>
<card pane-specification-id='0' param='[federated.13ghfoq1jnub0h1377xim0h4uj9x].[sum:Total:qk]' type='color' />
</strip>
</edge>
</cards>
<viewpoint>
<highlight>
<color-one-way>
<field>[federated.13ghfoq1jnub0h1377xim0h4uj9x].[none:Gender:nk]</field>
<field>[federated.13ghfoq1jnub0h1377xim0h4uj9x].[sum:Total:qk]</field>
</color-one-way>
</highlight>
<default-map-tool-selection tool='1' />
</viewpoint>
<simple-id uuid='{64FDACE9-089D-4286-B25F-445B45BA2ACA}' />
</window>
<window class='worksheet' name='Suicides/Reason'>
<cards>
<edge name='left'>
<strip size='160'>
<card type='pages' />
<card type='filters' />
<card type='marks' />
</strip>
</edge>
<edge name='top'>
<strip size='2147483647'>
<card type='columns' />
</strip>
<strip size='2147483647'>
<card type='rows' />
</strip>
<strip size='31'>
<card type='title' />
</strip>
</edge>
</cards>
<viewpoint>
<highlight>
<color-one-way>
<field>[federated.13ghfoq1jnub0h1377xim0h4uj9x].[none:Type:nk]</field>
<field>[federated.13ghfoq1jnub0h1377xim0h4uj9x].[none:Type_code:nk]</field>
</color-one-way>
</highlight>
</viewpoint>
<simple-id uuid='{6DCCB3EF-808C-45F3-B657-A1937F1E8946}' />
</window>
<window class='worksheet' name='Yearly Suicide'>
<cards>
<edge name='left'>
<strip size='160'>
<card type='pages' />
<card type='filters' />
<card type='marks' />
</strip>
</edge>
<edge name='top'>
<strip size='2147483647'>
<card type='columns' />
</strip>
<strip size='2147483647'>
<card type='rows' />
</strip>
<strip size='31'>
<card type='title' />
</strip>
</edge>
</cards>
<simple-id uuid='{7F8692A1-190E-42B1-B12F-66037CF38901}' />
</window>
</windows>
<thumbnails>
<thumbnail height='192' name='Heat Map' width='192'>
iVBORw0KGgoAAAANSUhEUgAAAMAAAADACAYAAABS3GwHAAAACXBIWXMAAA7DAAAOwwHHb6hk
AAAgAElEQVR4nOy9948kSZbn9zF3Dy0yMjIyUuvM0lWtxYienVnFm7u92wOXS2IBHu+OwIEE
CfA38j/gf0DwV4I8kOARJIE9DrnkYXdkz0xPd1dXl67KrEqtZWjlwvhDlEd5RHrIiqzu6e0v
kMjMCHdzM/P3zJ6y98Tu7q4UQmDD+XczCCHOXSelrPvd+HmncLvefl4qlSISiXTUx2bQNI1K
pcLx8TGjo6NYltXRfW7PlFK6zkOn/Wu8TgiBoigcHx8TDAYJBoNIKWs/iqKws7NDLBYjFAp1
1fdmfVIUhXK5TKVSIRKJdNymG+x+uj2/1T2t+tcvlEol8vl87f9oNIrH40GzH253oNPOKIpy
7rPGCbAsq+uBtXoBXq+XSqWC3+/vqk14Oa61tTW8Xi+JRKIrYoX6MTcbW+N8dtInZ/vpdBrT
NIlGo1iWVTen2WwWn89HLBbDMAxUVa3rT6t+tOqPz+cjnU6TTqeZmZnpmQmaMUArdNK/V0G5
XCafz2OaJgMDA/j9/ro+ao0PVxQFIQSqquLxeCiXy6+8qjeDs512bQohyOfzjI2NYZpm25fk
JIB8Pk86nSaXyzEzM4PX6+165Xe+3FZ97XU1a9zlTNOse46iKEgp0TStjvmaEZ39WSf9EUIw
NjbG9vY26XSaSCTSUZ+LxWJtUcjlcsTj8Vo/u8FFrv7ZbJZEIlH7v7FvYm9vT9qDsLdgIQSh
UAgpJYVCoeOHNRJVOyLrhQHK5TKDg4Ntr81kMmSzWaSUBINBYrEYXq8XKSWGYbS93+6T8+9m
13ZDbE407qL2wrO+vk4ymcTj8dStkNlsllQqhZQSr9eLpmkkEglM02w5FrfnuCGVSlEsFonF
YgSDQeD8uG362N7eplgsEg6HURQFTdNYX1/njTfeuHBxxg3O92D/XywWMU2TUCjU/L79/X3p
XC17WcGarYzdbqX2ataM6AzDIJVKkUwm27ady+XI5/NMTk5iGEbHq1Kz8beSbZ0M0ClazbNl
WayvrzM/P19b7W1CtsUiIQT7+/vEYjF8Pl/dO3DTLRr1vGbPzmaz5PN5UqkUw8PDdaKiZVms
rq6iqiqJRIJIJFI39lwuRyaTYXx8HEVRME3zHGG2QrlcJpvNEgqFMAyjo51ISkk6na6bJ13X
0TQNn89XY+Rm0OxVxzk53aKT1bETNK6mjfeqqsr+/j6RSIRAIFC7rnEFVBSFYrFIMpk8R/yd
iAPdfN5Jm27XN2MyW9l1fmb/bmT64eFhNjY2iEajqKpKNBp1ZcbGz1rpPpFIhEgkQiKR4MmT
JwwODtYWnv39fa5cuUIgEDgnokkpCYfDlMtlHj9+zNjYGIVCgUQigcfjaTsnlUqF09NTxsfH
yeVyCCGoVCp4vV7X6w3DIJ1O4/F4CIfDaJpW+y6fz7dc9Z0Qh4eH0skAvcBNDrUJuFPFqHEX
cWMAwzCoVCoUi0Wy2WxtlZmdna3JnvbE7ezssLi4eE7ceR0Wh07QbJezx7C3t8fQ0FDtxTb2
28ksuq6zt7fH2NgYqqq6jtHNaNFqLkqlEuvr63g8HhRFIRQK1frTTgeSUvL8+XMSiQRbW1tM
Tk4yODiIEILj42OGhobq9BjbOhMMBuvm5eDgAK/XSzAYxO/3o+s6+Xwen89HNpslHo/XEX4v
6AsD2B0Gd6XReU2zyWvHKJqm8fz5c+bm5pBS1nYtwzDY3NwkHo9TqVRq7UxMTNT+d+LrwgCN
cC4AqqqyubnJ9PR0bXdrxgBQnZuNjQ1GR0frVmfnu3BjALd2m33XrYVHVVW2trYYHh5GURTO
zs5qxFqpVNB1nXg8jmEYFItFhoeHXUU3KSXZbLYm1kQiEUqlUs1E/Kp4NfZxoBuzXyfWFCcU
RcHj8eDxeFBVFV3X61b2+fl5tre3GR4exrIsfD4f5XK5t4F8BWi2g5bLZTweT1srj2VZTE5O
kk6nWV1dZXZ2lmwux2AsVlsomok9rcShXsyazntzuRyJRKKmMzR+Xy6XCQaDTWV9+9mN3wcC
gZ765dQT7Pbdl4U+wVbcbMuB8/PG79ophbYJsJn/YXJysma6baYgf51Wf1umt8dmQ1EUSqUS
Xq+XQCDgOjfNFPLh4WGy+TwfP7rLcvqYTx/cO/e8VszUTyiKgtfrxefzuX4vhMDv99MP6QPq
57PZT+N1Usr+7QCNaGaJaKcwNzPp2dyr6/q571qZAZ19+ToRv9s82I6wYrHI6Oioq/hjr9iN
Y5FS8uzZM9JSZ/LGVYQQHG1scffRQ+LRAcZGR19ZXu4UQgjOzs4Ih8Ov5XmvggvdAVqh2Wrs
tsJrmsb+/j7xeLxr02qvpt1+wyb6ZqswVB1LmUyGsbGxus/bLR4ej4ePP/2EHavExI0rtecl
pifRZka59/QJuXyOUqnU30G5QAhBOp3m+PiY4eHhnnaXxlW6GyNKt3gtDOA2oFbKqVNkUlWV
k5MTDMNoup02opno9VWjUdRxjllVVQ4PD5mcnDxntm21g1mWxd/+8hfoPg9DE2PnrtE8HuJL
M9zd2+LjO583DZnoB+wxnZ2dsbi42DNR2u+vGzN6r2N4PXuiC5opwvagncxQKpVqIRDfFDjN
gM6xNnqVG3UnqJ+z9Y11fJNJBpPDTZ81NDYKwN6zNbLZLLFY7FybrwohBM+ePcPv9/ftXTXq
PZ34cBqva2dA+MpEIGdHnH/bjjlVVdE0jePjYyqVCuVy2XVF70aZ/qrhJrc7F4LJyUmOjo7a
jsM55uRwknwqA010LmcbwzOT3FtdYXNr65WiPpshEAgQj8ebOq96hVNqaJwzNxpqJmU4RdCa
H6WvPW2CXj2l6XQaKSULCwu12CQ3OAf7dSZ+IUTNRW87rGxomkY6na4pjp3Y5gFisRjls3RH
fdA8HhJXFlk5OeAslXrluXIyYrlcxjTNniJ1O4WTcBt1qV51jZYiUDcymLPRZsqtG2fafze6
/22LTzgcrq1Wbv1plJe/rrD7WSwW2draQtO0mm/DsiwKhQKRSITBwcG6l9tqTDYhRP0BjIqO
5vXUfef6HlSFiatL3L73CPWRznu33qwTibpBNptlc3MTTdMQQrC0tNRTO040M/H26kB1a8v5
HC2fz9fcyhsbG/j9fmZmZtjd3SWdTjM5OUk0Gu16AG6T385L3Ph9NBrl5OSkZhVp/P4i7Nf9
QLMXZvsyIpEIU1NT6LpOqVRC07RaiHZjAJlzXtw8wVJKhgZi5HM5IvHWUbJOTN+6hlGp8OXy
E77/1rs9mUhDoRB+v5+lpaWW1q1u0MuC28qg0vh5473K1tYWUlbDa8fHxzk+Pub09JSdnR0m
JyfZ2NjoaRCt7P3NPJKNUFUVwzDq5PtG60k3z34daBZyYMN21q2urtacRaqqup5xaGYoaISm
asgGL2czOBlH83rxjw3z8NGjnnQCRVEwDKOraNt+oxPHnpuTrCZ5RKNRZmZm2Nvb4/T0tPYy
gsFgzRPZDdwsFW7XNPPoOq+x4+E3NjY4Pj4+p9g5/7fb+6oZwNkvN1iWRSKRqFmBGvUXp/mv
3UJiXxsfHKSQybV9vltblmFyLCvceXi/63Hm8/m24cbdovF9NkO799ypD0GxY8k9Hg8nJyc1
wguFQggh+j5A6GyQduenp6exLKumBDcSS6MFyP6uVzSzOHQ6rlZt2jBNk6mpKXZ2dupidVo9
t1lfhBDkCwX84ZDr9a36L6UkNjLM2KUF5EicB48fdTxWoBaT1a9wBmjv93Ci3bvpZA7E0dGR
tAnIuYoKUQ2yskOOu4H90HYrkbODbtcqisLh4SGaptVCaNu9UKfC3AsaJ6xTs2rjS3MjZnuO
dV3n4OCAUCjEwMBAyzE5Fwm3vgghyGSzfL62zNilhbpxdAIhBJVSmdO9fYrpLFdGJliYn+/4
3u3tbbLZLENDQySTyb7tvo00Yj+v8btXheJszDTNmixqh9T24tDoVBZ1ijDNrk+lUrVTSZ0M
uBc/gM04vU5opzvaxsYGKysr7OzskEgk2hJ/J5BSEg6FMNI5LKP7d6WXy6w/fIw3HAKfh7X9
3brDLq3mXcpq2PnExARnZ2cd97fVyux8FzYtul3fL0Z7bcFwzb5rJFj7b3vgznBgp6evlWzc
zeQ4J9ZpcXF+325MNvG7vSC7zaOjI6ampmpmz0ZTp9tzOt2JhBB89O773Ll/j4JXYWhqAn/o
pejq9pzDzW0syyJzesbUlUv4ggEGEkNUikX+3Se/Zm5kjImRUTZ3tsmVirx3682mDD4wMEAm
k+k4C0jjit44lk5Em1dFjZb6dSCm37AJ8/T0FK/XW2eKdVs9Gieu022ylWzd+LkbATj1D2db
tihmWRYej4fl5WUuXbrkGs3q9JE0iqLtnt/4fTaXY2V9lZ1sGn+oesJqfHGubrwAq/ce4ouE
GJmZdmWu7PEpueMTIiPDmLpB0lC4culSLaDOdnjZRG+aJuvr6ywsLLQVU53ft0qv42aZ6sU3
5Qa7na8sFqhTxONxtre3a+ddm63ITiJ0oqUC9OKeVucH3JjKzQrV7B77PjudiRuaveh2/Xdr
JxQM8vaNW7xpWTxfXWVbz7teOzY3w87qetMVO5KIE0nEa31Yu/+YVDbN5v4+12bm8Pv9DAwM
MDQ0BNQHMHaDxh29k7nsB+x2vrYM4CQy52GGxu+caLYztLu3WS4bt8l33u920Md5nZQvjzf2
EsrtNsZOYK/KsdgAX3z6GNMw8Hi9JCYnEEq1vdX7j0jOTrmOza0PiUsLmIaOv1Ikncty+fJl
dnZ2SCaTbG5uks/nmZ6ebkugbrtNoxjaOPZ+Eb0bvrYMAC8nwO/3UyqVauHQnRKFc7KbiTlO
tJtoJ8G3M3k2yt3RaLQrg0Inuke7+xNDCf7iT39MoVAgnc1y/4t7EPBxdniEXtGBztv1+n2A
j6lrV9j+8j6qquLz+Xjy5Amjo6NMTU11zOCtlFmnKHiRhG/ja80ANuyMAO0CrdopinB+J+hk
xbJ/t5PB7fZaKeiNz2zcNdzkf6fFrBtIWT0MH41GicfjHB0fsW/pIBQuvfsm4cHYuesb+9MI
RVUIJOJsbG4yNzvL2NhY3ZHDTvrUCWG/DuKH3xMGKJVKPQdsNaIVgzTa8BvFpGZM06nS52bt
cfMfuLXZyy5ghyr89tPfUaxUMMIBRhfnOd3bo1wsnmOAxuc2Y4LhmSlWlp8zGIt1FCfWiXGi
3cLl1p9+MIliN9St6fB1Qtf1vnob28Feid08zE5iblwtNU2r9dO5WxiG0VT2bXym/XnjTy9j
WFtf5//9+Jeoc5MMvXWDkaUFhBBc/+h7lApl9te6j/OyERlN8mz1ecfXN1rI3MboxhStFoZe
FoVGaI2Nd7LVNq6Q/ehIM9hE14n4cVHPt9FMUbYPs6dSKXRdJ5vNMjMzQyKRYGdnh9HR0aZE
3Kt40w7FYpG7z5aZef9tcFvFpyd5dvsOyZmptg48t76V8gXGhhIud7i30Y9rerm2Hc6JQG7m
qHYduaiXaLdtR4W2y0rWC5opym6fuf1dLBY5ODhA0zRmZmZqO8f29jbLy8tEIpG6wzztlPF+
KX+qquL1+ZC4q7qqpuEPhShksoRjAy3bcqOJWDLByoOnzLSw/HRiWWuGVuJhP1FLj95N469L
Q7cxODjIzs4OUK0R4Pf7iUajdUlh+4Fmnkl4Ofl2glohqtmHl5eXuXLlCj6fr04ZHB0drd1n
W396JYhmC4vTgdZ4fSAQYCgQpJTPE2iSnmR4apKjrW08Ph8en7erXbZSLBHxBTg4OKBULp9j
BLd+dSPONY7ZTUfrB87VB7Af0G41d3MSXZQoFAwGWVhYqBFXPp9nb2+PWCzGwEDr1atfEEJQ
KBQ4OjpiZGQEr9dbOwLoNNHa6NYy0moXaOZkakYIUla9qEfFAhMtcvMEB6KUnhZY/uwOgXCI
uVvXUFscjLFMk9ThER6fD83j4eDslN3MGaFohKGhIUKOdIWvQvzO+20R076/36JwbbRuDp1m
aCYXXyQTONsOh8P4/f5auaDXsRsVi0UODw+ZnZ3l+PiYYrFIIBBgYWGhZTY6Z/87Xe0bFe1W
PodmyGQyZNIphnL5c6HSTlx6/10A9lfXOVjfZHzxfCSolJK1ew8xymUGEkNkT07RyxUq0oCK
ZGZums/vfckffPjdOsdlt2i1wvfjHbtJLj2ZQRtlZSe3XqQ+4ITH46FSqVzoM2zk83l2d3eZ
m5tDiGoKQhv2atuIduJAOziLlnQLIarnqY1yBb1caskANmLJYXaWlzENA6XhwP720xWiQ4Mk
Jsbq+lUplTEqFbx+H9pYgp/+6pfEBweJRaLnRKJu/S7N0I65/H4/QggMw6iLu2omtve0n7iZ
rmxCeF26QaVS6TlJajcolUocHBwwPz9fU8LdjtY1op0XulN0ywBCCHL5PL99/IAbf/xDIi9i
ddrBHw7hD0f41f/5EwqZbN13mZNThh3ED9Uxef0+gtFq4tpYMkH85hLmaIzV3ClfPrhPqSFB
sW3q7UTCaLf7NYOdTqfTg1xKPxUKoI5ALpI4Nzc3a4rmRSKVSjE6OnrOD9HICG4/rzr+XnfR
T7+8Q/LyEqJLeVkvl/GGI6w+XeVs/xCoyv2aprm21Ug7Hp8PfyjEyPwMeiLKr7/4zNV/40bY
vYp6jbCTPGQymY7aUBpX8sabGl9oMzn/orR0t+dsb2+TTCYvPNmrEKKWi94J55x1QujdEPKr
7ha//O1vCMxP4/F3lkbSiZnrV4kORBiYmOBwawdD1xGKQqVUxmxx2MaNhkKxKCVD5+Hjx+Tz
+XPKq8fjqaVTacyR5Gy314Wk03u0xo63elmdvuiL1AMODw8JBAIdVzJ8FUgpicViZDKZmsvf
Tfyz4WZN62Qx6CQMoB2EENx99BAxniQQ6S0r886zVU6PThi+cRM9keT+b29TzueIDQ6gqJ3t
Js4Fcu69Nzk7PGbz8X1GAxHeunULqBoUHjx4ULPghUKhWgWZ141aKITbtt1sq2o8jO72/UWg
UChQLBbPFVu4SJRKpdqpNOf8uCm5bgTfC/H3snhIKQl4fT0VJtTLZQ43Nklnclz9kz9G0TQG
RkYYuX4dyxcm44nw+NM7Xa/EQghiI8NM3bxCKR7kX/9v/yunZ2fkcjmSySTz8/O1srVHR0d1
O3qni/Kroo5S3QboVFxsTbpRHGplp+4XDMNgb2+Pqamp16ZoK4pCJpOpK7jW7NnORcR5XbuX
12wR6fSl2+9ka2uLuw8eYlTqT5y124GyZynu/eoTtlZWiYyM1p6tl8tsPXzMwNJVhKoxkIh3
3Ce3xUAvVbi6dIl0KsXe3h6jo6O1dIqDg4McHBzU0vI4773oXUHs7e1J54TbMlknA3Nq6s2Y
px8DsCyLlZUVLl++/MptdQNFUdjY2GBwcLCWotEp+zdDKwtQ48r2qinct7a3+em9+6hDSSrF
AmbqGH/Aj9fnRRGCUrmMz+cjOTXB4Eiyrh9CCFZuf8nA4hKKqtacYFJK1r74ktDsEqrPR+7R
l7z/o+/03Mfth0+ZDMe4fuVqrcidpml1tcwURSGfz7O/v8/8/HxP2Uh6wTlPcDec124l7hcH
21Uht7a2avkzO3l+t7D7atfJrVQq+Hw+18Msbqt2qzbhvA37VRcIIQT3nj4lcuNNAKqq+iIA
pbNTzp494coPf0ClUGDl89tMLeQp5vNYhokpIRINU64YdcQPUM7lMRUPqs9fnWMhMHQdj9fL
7uoGlVKZ6SuLbfsupWR/eZWFwSRzs7MYhlErb+sWERoKhZidneXRo0fcuHEDj8dz4VnnXM0o
zbZvNw9ws5W/nwiFQiwuLpLP55GyWoJTURRGRkZqE9oMjSux7am0a9HapTkLhQLHx8cYhkEo
FCKRSNTSfLvJ/t3a+d0U5ledJ9M0yaDgZu/xRQcwZLV9bzDI6LWrbD94wNitW2heH5rfRzGT
YXxi6pyJM3dygjcae9nPoVF+87e/JhIOYA6OYpQsfBvbjDqOVLpCStSSzsIb8+i6jhDnazq/
vLQaM6UoCteuXWNrawvgXMGQfqOOAZwyfjNPpH1Nowe4Ef22Ag0ODpLL5VAUhcXFRUzT5PDw
kL29PbxeL4ODgzXvsGEYlMtldF2vrbp2QeV8Pk+xWKxZkXK5HOVyubb6uI2n1QvoxvzrFubQ
KdyYbWNzCznYxNGlKHi81RANaVqEBgcZWloi6LC2hONx11sty0IoL0kjlBzFGwojTYvgC2vY
+uoKR3uHLN26WpeCxYnT3X3mJia7ynZtX2cT/sbGRu2scT8ci42ojTIYDNbkMKcY1Cjv22gm
97t1sB+MIGW1gMTy8jKxWAwhBCMjIwhRLSdqiyyBQACfz4fP50NRlJqtuVKpUKlUUFW1Flin
KEqdOVXKak3axud2MuF2lKjzPiecOlav89HIaLdX1/DNN09Jrvj8rH1xD7NUYOrWDbzBUDWJ
bpvDRb5QkEKmvp6YJ1RvWg1Pz5J6cKflWCzDZCAcOVesvBPYczk5OcnBwQHT09Osra2hKAoT
ExM9temGGgMUCgXX8NrGld7tu1aiUaOy/KoYHx/n5OSEoaGhWn+8Xi/JZLLlfX6/vy6XjbOP
pmnWdoxGNBJysxBkcA8otMf9KhVZ3Baf+48eUYkP429RAHvo6g0A9GKBndUtKrkc8USM0Sut
jQnWixTtraBoHpRonOcPnzK9OEd4sD4qV0pJKZd3pQ27f25opCePx0MgEODBgwfMzc3h8/lY
Xl7m8uXLru+rW9TNXqNiYv/frGCZk7DtH6d/oJV9vFcMDAyQy+X6UuJHSkk6nSaXy/U0me0U
YbcsEt1YftwWDiGqtbju7h/ibyLCNMITCBJfuszw9Zvks3nMNmMNRKNUspmW1wAMzC1QGhjl
y8/uc7K7X/fd4foWl4fHzzksG2nBTdx0iky2mfTq1au1bOH9sJ7ZcFWCG+397eLRGzm73/K/
E6ZpMjw8zP7+/rlyor221zg+u+SP1+ttKto0G2Mra1AnMmwrJ+L2zg6/vnefcnyYwMKl1gNz
ger1glpN0NVMCDIqOmcbm1iFfFsrnhAC/0AM3823efT0EQNrWyiqyvDEKGdbu3z0h9drY2q1
YLk9p9FoYX9mWRZDQ0Osrq4yMTFRS+fv7FNjG60g9vb2pFPh7VThsx/QiXWjkWj6wRxOk2iv
O8vz58/JZDKYpsmtW7dqIpKqqvzud7/jvffeQ0rJzs4OY2NjtfkplUqk02nGx8dr47MXCrsv
zV54q52w1dw8W1vj4609QlPTrzR/6c11huIRoiMjrt8fra4SDPjJpTNUAjECXZz7lZaFNE2K
h/tUMmnmohGmhocwTIurl5ZqWSrcxEo32Ct942dCVMOdd3Z2iEajJBIJjo6OiEQi57zJ7Wjj
nBWocZVq10An9nCnONTqum4wNTXFxsYG+XyeoaEhfD5f122apsmlS5dIpVLs7OxQLpfJ5/Pc
ehGzsru7W823mc0SDAZZX1+veYW3t7cRQpDP52uu/f39fTRNo1gs8v7779dVeofegwQVReGz
J08JX73Z9b2NCI+Mcfz8KcHYIJqvvpqjlJLswSHe8TEGEnG2NvY7ZgAhRFW5VlVCE1OEJqY4
Mwz2Tk9QPR6e/+znfPTO28QHBzEM49yu2kgj9pw5V3dn1gxFUZidnWV/f5+VlRXC4XAtk7iz
3cY+nmO+lgNyMEQzwm78sTvqVrq0Ub57VczOzhKPx0mlUqytrVEsFhGieh62k1KdlmWxvLzM
yckJk5OThEIhVFUllUpxfHzM7u4uiUSirsJ6OBxmbGyM6elpRkdHCQQChEKhmg/hzTffPPdC
21UraVfUO5PJUPT3p1CJ6vMRWbzMs08/p5Cury4phGD8xnXw+dhdfo5mVSinU10/oyanezwE
R0bxxYcozy7xf3z6Bb/69DNMl1JQbrpA409j+n7DMBgeHmZ+fr5myi6VSpRKpXN1mJvRr+Km
pDUqXe3qcjXCGULdqCDbbTSGWPcCKSWBQIDR0VHm5+c5PDzk6dOnNWdWNBptKVPbPoU33niD
VCpFqVTC6/UihCAWi+H1emtmUa/Xy9TUFOvr62iaRiaTIZ1Os7u7W6umY/epWV/d0G5OS6US
f/PZbSLTsx3MSGdQvT7i199g79kaZqVSFV1eiDBGpUJ0ZIS573xIYm6W4tlJX56peDwMXrnG
dniQX35+G4/H03EZJDdGsJnANE10XWd0dJRsNksul+Ps7Kz2nrxeby1fk6qq50Wq/f39tunR
G0Wjbgi28RSR299uz+kFQgh2d3eZmJhgYGAAwzDI5/NN5fFyuVz3Ivb29ggGg0SjUfL5POFw
mEwmUytnur+/TyQSIRKJcHp6it/vp/zi1FMwGMSyLCKRCOl0uqNcoJVKhWwuR2JoqOkK9ZOf
/Zz8xAyKx+PSQu+QlsXBnc8YW5jj+aefkpybw9ANSmWDiaU5BkaS5M9S7G3tE5tf7Ouzi6cn
+I4P+ON332bgRdbvWr96XBCdC6yiKORyOXK5HLu7u7z77rtks1lSqRTRaJTBwUF0Xa/u1K0Y
oFXu9madcF7Xrp3Gv/uhIO/t7RGPx2sF/noNqGpmvrWZqdtdsRHFYpH/+zefUAiGuBzw8t13
3ql9d3JyUj2HvL/Po3SWyGL/gwBNXefk3m0URSE0s0Dx5BhfNIpeKDAyniQUHyRzcMDh3gmx
xe4tTp08v3Kwx+WgD9PQubSwwGAsVledxol2O6xTzIaq/+DZs2eYpkk4HKZcLrOwsMDJyQmn
p6csLS1VD+IcHBzUMYCbSdOJfjHARcG26dsBc72iHQP0aou2r//f//aniMXLIATl1Wf84bXL
PFheYTOXx9K8aMEAgaFhNL8fLsCkLKUkv7dL4fiIxNXrtR3m6NEDVL2IYUmk5iNx/daFmbQB
KtksiqZSOjrkVizC0uwMXp+vi7zVVTQyAFCzCNnf2SK5ruvs7u6+ZIBWZqhmg/xb2YMAACAA
SURBVO9mq3qdDFAsFslkMow0MfN1ikYGcIvk7JYB7Pnc2NzkF7uHBEerfgxL1ykcH+GPD6H5
uj/K2E+k1tdAWviHEuT29ohfuvLanl1Opyhsb/LRwhxXLl+q0yGdPimgtlO0kh7s75uZ3xVF
QWtUeDsl6m6ufZ3oh8e5kza6eYbTwJAvFPh4ZZWAQ65WPB7CY+O9dbbPiM3OAWAZBtIysUwD
obif2e03fAMxvJEov1t7xqPNTaaSw8xNTPDxF3cYTQwxOTLC42crKJrKuzeqfhtVVZueV2+n
t5qmWa0R5nTgOAm7Ey29E+X4qxCBPB4PPp8Pr9fbFbE2jqMfO4A9/lwux9/cuQsT011nbPgq
UEqnOX32lMT1W2i+1rUZLgKyUqG8/gzv/BKWrnP68C5vvP8GgWiE3SfPkKUS716+RuJF6pdm
DrZWxhcF3G3+7V6soigEAoFakFkgEGhK6P2I2+kUti24Uqmwu7v7Ss92M9P2qvjqus5PPvn0
94b4AXzRKJo/gFEofCXPF14v/kvXUDQPWiBI/Pob7DxbRdU0pm9eZfrdN9nY2kTTtKZF08Hd
X2X/uKZGbAVVVfF4PPj91dNCTgXa6/XWymU2otHDd1EQQjA2NlYzhdlbZK9w2xG6ydpmX3Nw
eEjRFyDye0L8UDWVFs9OsQwToSjVHEF+P55A8EIU83ZQfX5SmQKmYaC9CIw7KRZ49PQp169U
dRWnE9LN6eqiB3T+QuxypfaJqkbYjodGD7DdsX7I553Cjjnp9nmdMmi3jLx3dNRx9ObXBenN
DcrpNAjI7e5wuvyE5z//KQePH1E4PkTPn6eBi4RQFPyTs3z+736O8SIt5uQ7t0gFNf6/n/+M
w8NDDg4O+NnHv+IslWrrYQcQuVxO2qm94UUcd6lUF8cSCoXweDw1zduyrLpqKE7Y8TSvG3ag
1dnZWc055ff7ifdIdPbq4baKdOMDsK87OT3lb7/4En1oGMXjRQsEUL6G9Zmd0ItFVK8Hoagc
rqywv3eIWLqFLBWxMqeopkEyoJC8ev219cmslEk9WyaimFz//gcvF1hLsv1kuVrwOzmMvr7D
cGyQ4ItQFTvMRQhRi/SVUlYZwJn2A6ov3zAMDMPA5/PVUlVYltW2VFGlUnHdHS4SiqLw/Plz
VFUlFovh9/trB7B7FbncDm07n9dpwTznTmgYBssrz8gVC6wcHOF7cWDl64zCyTGH6xukI0lE
KHpO9JEbT7ly6xqeYPsEvK+KciZNaW2ZmaVZvH4/A8lE0/eb2jtAAkalUg27yeRYGp0gk83w
+NkK/8l/9FfV0lVuDNANGk1PhmGcy8t4UZCyeqDl7OyM8fHxml7SDzgrvXfLAM0UZ+eu8Td/
93fkF16fjb0bSCmxDJ2tu/dJqwFIjCJU9zSUslIifLDG3HvvX7heYJbLnD15wGgyxvyt7nYd
KSXZk1M0TSOfzpBZ30bxeV+tSqS9SzjLl9pKcj+Oq7WCEIKdnR38fj9DQ0MEg8ELySPT6N3u
xQrUGB2qKApF8/VZxrqClBwuP+WsaFAZmW97flic7BOfmHgtSrHi9eINhfH3sGALIYgmqubS
YGyA4ZlqRoueTRL5fJ4nT56cO5wshOgoFLkfKBaLDA8Pd12Euhu4RbO222XcfAROUers7IyM
9nrmqBtIy2L70WP2lDDl4Slki/PP1RskvmKWgYnJ19ZHLVI1wjRmwOsVPTOAvcq7Tc7rKGkq
RLVG10U52RoJvxGdiFrNGMDv9+Mx3A/gf1Xe9XImw7PPb3OshRHBzhIPW4c7jC0uXHDPXkII
QXBkjFPLy+3ffsHOs7VXnq+eqMeyLMrlctPVXlVVotEo4XC4dpC530in04RCoQtzsjXK7I1M
0CmxujGBpml878olUs+WyW5tUDw5Ptf264Q0TbYeP6EwvoQIu9dca+yT1CsE8ycEE8Ou118U
9HyO4vERloTnT9fIp9Ltb2qBrnQAKWUtxt6WZcsvck86IYSoReLZ5qZyuVw3iY0lbLqBEIKT
kxMWFxcv1MssRPV0mWmalEqlc+KPk7ibHfw+Rzgv/p8cH+ffD4cpVyr89PYd6PDo4UVAqCqm
ZSEcITG17xrGLKWEo13UYg7VsiieHBNKvlrgYafQ8zk42OStd66hKEq1xKtLtftu0BUDlEol
isVi7f+pqanaBLV0NghRpyhDdSJtBlAUBV3Xayd9pKye+rHTkrslQVJcXlYz2GZcRVHw+Xyu
fgohBB7HoRO71I7NyHbuIOf13cJJTJZlEQ6HGfR4kI7vvyokRpJspU4gFKkqtNkUUtdRk/VB
eiJ1zPTwACfLu6SPT/CHw4SSI1imWefXKGcypLY3ic/O4+mwXFEzSMsiu7mOTy9w/YO3as+x
ldqe25WycwaoVCp1xA9wdHTE0dERH374Yddyf6P41KoItu2Ys3WORoawFU57t3H+2I68xmcb
hoEQorZ7OeOg3BAMBmtM6jaWXsUW0zR5/8olfnewR2Dk1dO89IqhuTk8e7vkT/eQlkV4aIjt
7TMMGsS4com92/coT17CKhlkd7eJTU+z+stfMPfRH+AbGOB0dZWDsyzWwBDq3i6JhcVadKnq
9WGUSrV4KLWNwUTP5ylvPWfpyjzRhPvJuV5gWRZHW9ud+QEMwyCbzdZFidrysdfr7SkjQ6+d
LpVKNcK2LAuPx1NjpIvsg2VZZDKZusqUnSjgjdkP3LzKiqLw09/8ltPRSZQLKvtklIrkDw+J
Tp5PhutE8fSUwskRZ2dpSniwJuuVXOvsmFGKnBYqGMOTmMf7eMt5KuUyHiFRg2HKFigzl5DF
PN7V+wQGBymfnhJOjjBy/QbPP/kEXQp8imTi+jX8sebe+pP7d3jnu2/j7aHkUzNIKdl89AS9
XGm9AzTK/FAlss3NTTY2Nnj77bc5OzvjypUrF16vC6rE4qzX1U706jdsi5A9F908v5nSbIt8
MyNJDnI5fLFXk2kbUTw9IXuwT6VicPD0Cbf+LNHUayulZG95mVxyFjmWBEXUncySpkmklCJx
6xbl+/dISYk6PoMhJSpgSoklHPeoGuXYCJVwDOmNYhxuUf78M4oDSUQ8SdEyefZsk+mxPNHx
yaa+BKF0/44bRbLG7zInZ1z//neaW4GklBQKBbLZbN0qZsdSTE9Ps7u7W4u8/Crwuok/HA4T
iUQIh8MEAoG6EJF26V7afTc/P4/n5KCWocGslJGWhVmpoL9CbFXh5IT9hw84LBp4NJXM9ha5
g31SmxvnrjUrZUqpM6xKGaGqCNFg+SrmGBiIoGgaI0uXMPc3gRfvQYjqziJeHk0UXh/KxBwi
OoiSGMO89j656WsoidHqtZoHxmZY3z1h7fYXVLJZLF3HdOhagZFxUof1VrJ2yKfSLH/2Bat3
79eqXTpxsrPH8OREfTh0I2zLjdvnmqYxMzNTPVHzQp6+KHPn1wVCiFpqDechmUZ9xI3QWxG/
3aau6xRyBY4++xQUFeHxIg0Dq1JG9XpRjQoT71bDDRRVRUoLaOOVlpJ8JoOcXECdmEfGk2zm
syh6HiV9TGRsHNWp+Ht9zH/wIZuPn1CKnj9TrYQHOF3fJr6whFAE6tkRVmIMJVSfYbslGvur
qCiT82SKBUq//TUyHEMIWLh5HW84QmA4yfqT+0Tjg4Bk9/kaYwtzqJqGx+tF2ouzEFimiWVa
rN59wNytG2heD8+/uIteLhNNDHGwtk65WCJ1cMQ7P/4ToIkVqNHi0fgd1BeNKBQKRKPRbzQD
OGHrP261g23Yu6LNMLbS7dSjKpUKz54/x/dCeT86Pib49ncR2vkUKHr6jOcff4wnGGBkcZHT
jQ0CkQiDC80rtUgAacHQeDWkITyAGh5AmgZWIUv+6JDo+MTL6w2DtU8/QR9u7tlVPR4q+Rye
YIirf/gjnn75ABmKvLLvQg0EMW98Bwl4Np/WdKFyOoXXLLN69z4en49gJMLmgycgYHxpga1H
TxCKQjg+SPb4FK/fz/S1KwSiERRF4cp3P+Dxrz/hZGePqauXsSyL+Tdu1t7POQaw7fXObGhu
1zhhWRbFYrFWbeXvCzxNcvV4vV7uP3zEyckxmwdHRMMhQn4/qVIZDUk4EGA/mycrNHLFEn84
N8FpvoBvchaEuzjpGRgkcus9pLTY395AjcQ529tkYHqmtSVFVi03IhR9+ZklCVfyRMbeYPf2
ZwzOzuONRMjubKPGEugj002by3kjrHx+h4FYlIFkAqm4F8KG8xlG2uKF/qB7fBjlcrVEk2WR
mJpkfGHuxXiqbe6vrXO0sc3MjetUSiUMXWd0fs410fHSu29RLhYJxc47+TSoWnkKhQIej+ec
qbNxYKZp4vP5WFtbY3Z2tjbIcrmMqqqvzSL0dYBdgMMZiGdZFj6fj9WDQzbDw4jFMTIuOpKa
UBFAWFr86uQY1RPGNzXYUpewU5eE5i5hFAt4yzky21sMzruHIwghmHzrbcp3vqQoh6vih5QI
VcUTCmGWy5zmyxxuHWKdPUINhghaJlKvILzuVhcxPIYcHuNMr3C8t482Plt7lhO97ghSSpRi
DtVTZers1iZTNxZeGhxePGdkbrZ2jz/8Uql3oz1vIIC3oZSWZVkIQCsWixiGUcu12Ar7+/vo
uo6iKCSTyboIRyGqdbbsWJe/D0xgh3zY2+n+/j5/86tfo0s4LpTQkrM1XaEZhFDwJ5J1fohO
iEcLBNEjQxxtPsc/OEhg0N2UqGgaYb+XgmVWQ5r3NwmZJTzBAOtf3sWcWkLxBVCSEyAlBWl1
dGZZeLxoY813CrddoBEyn4Xg+aLeplDJ7e0QSAwj/QGePt3gzXAYXzBQ13YvsFOtHG/vcv/z
h9VK8Z1GUuq6TjKZxOfz1ZlFnSa+YrFYC4+w82z2EkL8+wBnyIeUkr/+xcfsq36M00O05DhK
C+J3qzpp+zY6hWdwCO34AE8w1NIkmy6UEUMv+hkewNg75rCsw8Q8wudYGYVAiP4GMjbGQtU+
M03Ujcd4/AE0nxe9VMbSvEilWl9ABIJkD4+Izi1ilst8+ckXvP299/D4mmf5aEdjpmHw5W/u
cLR/TCmX59g30V0oRCgUIpfL1XlwGzndZga7qrvTeuI8ofVNYwghBAMBH5mdHfTYMCRGuiLm
XiNBg7OLbNy+TXJujohLwRDL0LHKL/U5EYlRCtyq7gZf0TuQUiKQeKMxxm/cfOn8kxLLNFBe
GAH88Wqog+b3Y4xOsXb/IeGBKONL9SJfM1oydYNysYjX7+PpF/fZ3U+zl5GUvEkISkBU8wJ1
EsagKAorKyssLLjLm24vsLFjNc1b0wiFQl+Z/+CicHxywtOVZ/zdSQElHG1/gwvaVVNxg57P
UV65z+i16wQG4zURpnB8xOazNSrJaehTenU47wCsW9ldrnWFoaNsPEVRFeLDCaLTsy1FLykl
ejaDubPKez/6Xt13bs/VKxXu/vzXHO0dEx8d5uGBwPCGoCHpYscUeHx8XKuI4oZmg3f+2Aqe
ruu1kIZvEhJDQyzNzzFZztSsFZ3C7RBNp9CCIXyL19nf2ObgyZNaDbCNe/cpj8x0TfydWAHt
9OR237vvtAe5eBNz7jpHJcnR44fnLnG2K4TAE46gm5Kyw1DT9EzwwSEP9gVb3jnuHXkxvGEa
iR86ZADLsjg7O6sLQ3BDu4lwMoMz88Q3Cclkku/dvI5Mn7Zl8EbdqJ3C3KodTzhKaPEqRnSI
9V//isz2JqFQECvTfYEL+x3puk6xWKxFz9rRwM5z0oZhUCwWmzJMM/2v9pmU4PODZbreU8cE
igK+QDVPUZN27X55vD6CZgbNKiO15nFEHYlAhUKBUqnUUYqRTmVZRVFQVZVIJPKNE4UANjY3
+ZvbdzkMxFAC9fFLmCZW+hRVWuimhWekv3lBjWKBgzufocxfQ4Q6O93lhH3gSVGU2sk/VVVr
57+LxSIej6cWjGgXJg+HX1p02p0rqBFvLs1Aapeha7dQmyQGdt6n57Loa0+ZXppldHbaVRRz
fMDKvSesLO+QKRpkvcPn9B7l+PiYra0tDg4OyOfzdVuxU8HtdJtrvL8V95umSeErSrt30Zie
muJf/PhP+P6AF7G9SmV/B6tUJHx2wE0rz19en2fEKqPF+3+iSvX5icTjfddx3XwUxWKxo1B4
m4YaaSJ4tsfQ9TdQX1gW3X6c8IQjeOavcrC5c679cxCCpTeu8qN/8CE+xX1nFYeHh1LTtFrg
W6lUqhUxs6unlEolxsbG6ji8W7TyCto5Rr9pliGgdrjn5PSU9c1NLi8tEfD72dja4t882URE
3I8gvgr0bIbU6grGzOWm6UzawRZPbaXcTjxm54ZyBgLapWYbPeNtJYH0CUmlwkCLavdQv3sY
hTy5lUd8/09/UKc0uz3LpifLsnj0uzt8uXJKwROr87a7ikBO+cswDFKpFNlsts7z22/Y2Zy/
SUF1UkoqlUptITk+OaFQKPDTz+9wWDaojM30/ZnZ50/IZ3LIqYV6G3+LPtpoGlPUgS7T6X0i
l0ae7KMqCrFIkMGFpZbWnzoRx7I4/vy33HjzKsPTk5QLRSzLxNAN9HKZwZFk3b27q+uU8wXG
5mfxh4KsP3jMx59vUgy83HVdlwenTV9RFOLxOMFgkI2NDWZmZi6ECXRd70tll68T7ty9x9/c
uc8/fPsmeydnfPFsFTk0AoOjbfPtNEIaBrJUQCoqQvMgmi0UQoFSHjyvnnalk/fclelTSrwn
O0zcfANpmWiBzqxTUlYL+BUO9vANxNjY3GdnYxtd9QICoSoY6TM++JN6BiikMxR8A5zee8pg
yMvozBSJx1tsmbKmC3S8P9rx74VCgUCg/crSC15HOpXXiXA4jDk4zF+vbKNEYyiX3+i69I+N
QPqYH81P8P/88teUfEH8l66Di9dWCIEcn0O4BKk1g03ETh9EOyXWeV/HON4jPjZWU3Y7tRpa
uk7m2RMGJqcJTE+/cKSBsze5R3cwdZ2jrR3iY6NYVvVAjOr34x++Qrlc4v6dR5TSp4jQIPLF
3HVsfpFSMjY2xuHh4YWJKK+Sy/PriEuLC/zBeBwlFEF5xQITwxoE/X7MqQX8l2+4EriUEtUf
gEIOc2cD2Sa2C5rnLuo3ZLmI/2yPQHL03HPboXh8SDAex/9COhBC0NhDGYxy99efcWRoPLj7
hE9+8u9IZwt4wpFqyIo/wODVm8x8+AEx4xBVL4Ds4lA8XGy+Gk3TmoYX/z7jo3ffQX52m1+e
5lBcAr86gbQsxgYiBINB5ME2oonlKPXoPqdbR5TLFpbiJSYl2uRs589xvF9pmchyGcUfqIkL
bsziBtdw6HyWwflF1B50PKGqSKs1M0dmX0Yo+OMJgpOz1VNtDv1CqCqRsXFGjo4YKhbYPEp1
lxirUCgQDocvhBG+qWcJFEXhB++9ww/iQcxsb0mchKKwcnhCMBDA1HWMfNb1usLxCWkrRskT
Rxc+rNNjzEwKq9Q8xP0cTJPy3c8pffkF+dt3kHsb9e9FyjovtzQNzP0tKvc+wzo7enkNYBVy
tTZ9mSOCw93lDxJCIC2Tws4mkfHu0i9qgUDTcxKjN28x8c57LC0Mdr4DCCE4PDxkaWmpr8mo
hBAEg8HXcqj+q4KiKPzwg/d4M5Xif/j5b8kPJtvf5IA0DaaH4gwPD/PRjWv8ruI+V+FEHMXc
o5IvkhYjHKcDcLdqLx/wZwksLoLXV436tMyqwhwI1RJiyZNDTh6sU1Gq8fUhs4iVTUM2hTBN
Khtr5E7LqBh4Ql4UISnkBSUlAgTxpjaw2MZrFbCESkUJEo9beOeX8Hm9KJrWtaUptfyEkRu3
6g64d7oAN9NZ5Okxi5rgD997q3MGkFK+crmhRqiqSigU+kYTvxOxWIz/4L1b/M+f3ccY7NwB
5j3e40f/qHqGde0sjTI04X6hqnJSCKCrCWSDup0pBincXUXBQAiJsCwEFuG5CbTZRQSQffKM
ivLSL1FUY5h7ecThE6QpqaghpPbCAFIGkKC+zAKhi6pVp6i8DJfPHJcIpr5g7L3O05nbhGoU
C+iZFPKFT6IbyaPptalT/sHlBeZnqibojinv+PiYRKJ/6fu+yWEQrTA5Ps4/vlbg/3q6jhFt
HloipcQqFwmkT/je3CShF3FYslhAVsp1J7Ysy+Ls/hccbmaoqFHcgr6kUNFVRzqUF9PuPdxH
hEKUnj2nZAbqbpVCo6y9YAhXSmkvsnoUi5lbS4THp9peC9Xd7vDL26iaBorCyI1beCO9RdbC
eT9C3KgwN/3yIE9HDCCEIJvN9pUBvonh0J1ACMG1pUVUAX99f5lKPMm59COmQeTskHcmkrz1
vT+u88D/kx9+xP/0m9uYyYm6NqPzlyhm7lLKWDUTXyfIlsLkH26hKwOgKD2baRthm009GtXT
ah0eisrvbDN28xaeUBhp1Z9O6/S0nPP6uv8VhaNShWwuRzRSjZHqiAJtV3e/lFS77NLfVwgh
uLy4yL/8wQfMZI+Qp0eY+RzG6THq3gZviRL/+Z/9KR99+MG58JPx8XGuxSNIO726rFZz0cIR
ouMjaLLi8sTmMIWnujM0OYzfK2xCTRthTlae1X3mdq2UktMHX+IP+PGEqmN28xC3Ol3ojDVq
dk1JUXj89Gnt/452gHw+TyTyaqkvnPqD7UjrJsjumwYhBMlEgn/2Zz9mc2uLtc1NoqEkV65c
IdjC0SiE4Or0JF8+3UKNDKDns+x/+hnJWzdJb+5iiP4dfOkHFGmg516ms2w8SmtDAKrmIdgi
03Q7+uuEnnw+H37/y/ntiAHS6TSjo6OdXOoKTdMIh8MUi8VaJyuVymurJPN1hhCCmelpZqab
HzB3QkrJ4cEBvLDcCNVDPmvw/HePqBDsSvzpJ5oRp4lKNl2u5icSrS05wuvFKJfxuhhF+mF6
13NZPkjGuXntau2ztgxgR4Paqcp7QTAYRFGUWpbmSqWC1sIk9i2awzAMvniyTDGbQwRCEI6h
iwC6uPgqjb3AS4Vg2Nc+NEMIhObBalI5pxO0oicpJSKXYXR+qk73bMsApVKp6oHskfidOfZt
fJMiPl838vk8y+t7RIMKVi7FydYxlvL1EnteQhJW84zcfLP5FaaJUS7hCYYwK2XXSjx9weEe
f/7GDaYm6x1q7sYtIdB1nUwmw+HhIZcuXer5uW42/m+Jv3fs7h9wXIlwVAaNCkURgR6yJ/cK
IY0XYlYnzxTkdR/lszNCo+6n3rJb68hCvloQZWCQ3Tu38Q/EGH3jrVcmfiklZqmIPDvhT69e
YnLivP+kRp02UZ6cnJBOp2tFp69cebVatt/K+f3F5vY+FTxIoaCLVwuw6wURCkwO+smUTA5z
FhUl2DK9imqVEFpz8SeQSJJbf0by2g1SG2t4/H54hYA8RVHQiwVKhwcMawrzyQSXPniXZNLd
+67Z5z+Pjo4wTZOhoSFmZ2f7skrbxyO/Rf+wND+NV96hLAIt05FcFEbjYf7Lf/FPsSyLew8e
829+eo+c6UPBxBQaGjoGXqwXO0RRG+L5gx0u+fxEpmbO9dUTjiD8QaRpkLh8FavLRAl17VkW
8mCXd0aGufQH32MgGm1rbtfOzs6Aar0v+5hbv3BRobV/nzGSHCYW9HLQRXxbvyClZCCo4fV4
ME2Td968STgU4De3H3Lr0iK7xymuzE/x2cNVfrWSwUJBCkHBCrDyu0dcVjXCLjWFfQODZPd2
iS9eqsX8dEs3VrHApFHiD773HQYGOvcca0NDQzUuuZA48G8ZoK/wer2MxPwcFF9aSy58J5CS
uJKhbFj86ff+GNM0a89cWphnYW4WVVV594VpVvN4+O3Tj6kofgKiRDIOxaIXf5OsIoHhJEe3
V6vHI3sYg5HL8kbIx3ff+n7XDtYLj0IzTfPvTbDb64CmacSjQdS9E8yLf31A1ZT5V//e+0TC
Iaamps7t7HbZKJt4V9a2MIQXVRrMXU4wfP3GubCGRrjVRLBRyWUpHB4Qm1uo0zfK6RTptTX+
9K2bfPj2W70lFev6jk4b1jRUVf3W4tNnKIrCSNTLlC/Herm/9cSaIUSB+bkZIi/CMlqdHJNS
4lEVFEz8SpnoC8tLu4zTnnCEcjqFP1Z/Jnz/3l3217YpaWFmC0VGb9wEqsX8nn7yBR9dneOD
t97smc76qqH6fD6i0SjxeJxoNEooFPrWCnQB+O6H71EwREexL/1AljCffvZ57X9n7ie7yqVT
9JidnsAnDAxTYBTb532ydB0jm8Y3UM/QerFAuVAkHZqgFB5ldTPN7oNHHD59wsoXj4gNxPmL
P/sHr2Ro6dsO4Pf7v3Fner+uSKUypK3ga7ECCSRLcckPf/BR7bPG1d/5fEVRmJ2e4l/94/dZ
29phK5vGiETRwu4Z6oxikbNHdxm5fqvWtt3e41/8lpQ3CV5ftXJMOMnKsYHQi0Q9Qf7VP/nh
Kydo6AsDCCG+Jf7XiLHRJBGfgp31/CIYQbXKCGkwN6jxH/7DH9YyRnQSkiyE4NLiPEsLcxim
yf3lFZ7kc6ih+shWaVkUD3YZuX4TTyhEemeHw5XnzH/nAwpHhyDE+byeiobPY/Cf/ckbLMy+
el6lvohA3yq5rxehUIgBpYBC/07nOSGwCGgFAmqO2ZEI42P1gZC22NNJiLxH03j72lWCJ/tI
RwJco1gkvfyIUGwQTziCBI42dznMSp5/8jvu3XlGxmpY3aUkqGf5q/cXefuNm31h+L5Q7reB
ba8XgUCAqbEEz583T2HeKzxmHq+axxxbQnr8HOipnsrg2juFLdKM+bzc/fIzBt7+EID8ziax
qRl8AwNYuo6l6xTzRfRIkj1LIqMvdIoXOYA0q8KNQYW//KMfMTfTWeRsJ+iaAWyFy1Y8FEXB
73/9Lvm/zxBC8PaNy/zy2RdYon+7r7AMPFYBc+56tYg1kCrJGgN0079GZvnwg/fRP/0MO6Wt
WSriCYU4XF5mZ+uESqGArgXBoyAb+CwmyvzzH17l/bff7PtBqq5mLxwOBEW28AAADmVJREFU
10ybbvnbv8Xrw41rVwn/29+QkfUpyXt9Hx6ziGrmESPD8CKhrrBMFuNBfE3SlneL8USCvdWn
GHoFfyHL8W9+yVpOoxhMQpPz0R6jyD//o5t85923+tKHRnTMAMFg8Nsw5q8RwuEQl6eG+GzT
vaB5x5ASj5XHHxJYoVHMgZdBY/7iGVcvn4/f6RSN5smF+TkW5ucQQrC2scV//7d3KYeahy14
MPmLt6b44O03enp+R33s9MJv5fyvFzRNIxbyw7kkgW0gJT79FI9ZQCARArxKEX10vo74Acq+
CD/59eccHh523b9WgZBSSp5v71LRmp9jCFTS/KOlQf7sR9+/0IDK2g7gtO02Evq3QW1fT9y6
usDPHn+K0YUkK7DQ/ApEg/iyZ+Dxg6GBaUDDqa2QUeBf/tMfMzLSQ0Y3F1oqlUocHh3zb3/z
JetFz8scQw74ZYWPpkL8+KN/yNjo6IVHE9cxgDPplVPOt8MavsXXCzMTY4Q9FqnzpwibQgoV
aQmsgVEYbF2aadRjMpLsrYKNTbiHh4c8XHnO9NgIP/nNXfaKkPcOID3nU7AMyCL/7AfX+N57
b782aUMDahVAgsEgqqrWOq/rOkIIfD7ft+LP1wxCCCKRMFG/2pYBvEam+k4tHVUYCNXC6kB0
2jB87O7tMzXZJBNdE0gp+eWnX3BneRNv6Yx1M4L58ICKN4r0uS+kwtT5y/dmXyvxA2hCiFoY
Q+Mq/03M1vxNgt/vx6u1EhEkHrOIxy+xhpJQKWHGRqoRlR2ItB5LJxLu7rB9Pp9HURQebh7w
zIwwKnQCssyJv/VOIkyd7eOz177Qan6/n1Ao9O0K/3sIn8/HeCLCs7Nc7TO7eITXyuIx84j4
EObQDFL1gJOWO3jfXkvvyMdjmibbOzvcffKcOztpvMIiLX2gqOx7hkHrwGMtLSYSrye61Qnt
oiMJv8XFQQiB4pLRTTMy+GI+9IEp8PeWLkUt5bgx5O8omvfOvQf8L58+p+KPgepCxG65iiwT
hECxDEa0Cn/w1iQfffh+T319FXwbxPN7jjcvT/GLp/fqEmKZWhirlIbh3j30pjfAl6dnhP/u
Z/z4T/6o7jtniMPR8TGZbBbD22F6RSmZCxi8MzNExbAYHozy/ps3iEYiX8lC/C0D/J7jrTdu
Ef63n5DlZbixhYIsmYjcGTLaY0JjRSXvCTE/U68AF4tFTs/OMA2T9e0dfnJvi4rqx/J2Vv3G
q+f5T//8I5YWF9pf/BrwLQP8niMcDvP20hi/epatZWIAiaKCEeqtBrFSzKCc7oFlsrZuEPAH
MC2LgWiE//EnP2Oj5EEREoRCOVBlsFartzB1pFBACK4mQ11blS4SIpfLSTtl4bf4/YOUkpPT
U/7b/+5fkzcsTsp+wpUDrNggxuhCT2KFd+shpcG5F5GYEs0oIhD4rDJZXzXVeScVI4U0WQqZ
/OGNWba3t/nywSP+6//qv2CkSY6erwLf7gC/5xBCMBSP88N3F/FMj3D7F59RNhOsqmO9N2qZ
Vc+w5kUCurcqXlVwF3OaMdmkVuK/+Y//gnA4TKlU4o9++IOvFfFDn88Ef4uvBkIIvv/hd9hb
WeMHf/7HzF+aRbG6Lyv04gZMxQvqq/mAFLPCP3r3Uq2+gd/vZ+wVMoxfFL5lgG8IhoaGmBka
Ri+ViUTDaOV630DHEAJCUdTK/9/eufy2cV1x+LsPzvAhUZTkpx6RbMuWZFtJbeeFoA0axGiW
WRQtEHTTbNtu+xd1WaDZZNFVV1l0ETR9pIGdJqkby6/Ysk3xNTOcubcLmpIoSyIlURJF3g8Q
JEpDcgjd38y59/7OOeX2x7L91b9gKrx942AszN3ECaCPuHjuPNXiKkkcY2RrdNuJCEQ9RD9/
gFAaEe+u08xmzp/KHwsngRNAHzE1OYV5UuQfX94hTu++sZyII8SzHzBBSJzdvoFfJ1TD+rFw
EDsB9BFKKa5dXqJmfGy7hhRbISU2nSceOtnWKtHOQfBwNSAM95mscwg4AfQZr0xP8fF7r5Pq
MIbfiKiHGO13ZJSDnfNEnokcf/vnl7s+h8PGCaDPEEKweGmOy3nV8UBukmQL6NoKIqpio1qj
r9cesUJQj/Y3jzgMnAD6EM/zePvSDDJpTRRom9knJWZoDL90n2z1Ebm7n6OC1bbvt9Xr6jjc
czLNYeIE0KfMTJ7BT/YWg4s4xOTHiTOFRki03XE72R+wx6I5Su+foWNPTE9NcfVEesswaKc7
QTJymkR62CcPIaphtY+sFUk9uo2qrHQcVtVTOf51+5t9fYbDwAmgT9Fa8+OFWWS82+pxFqlT
iJFRZC6P9/x7tA2wk3OoypOOEmkAEIK///fhrs/7sHFeoD5m7vw5vL98QZDqvIKyVSmi6UYj
aWHiRsO6F7YIMT6B/+Qb6kOnMC/2GbYqlmuNQdaKhF5IGIZdK6x1ELg7QB+Ty2YZ8fd+jbNS
rw1+gCR/EnN6FhWWW0IhIQTSJIiogo0jUuXHpOpVirWEu8vL+/oMB427A/QxSinGsh6P4u69
ZuJl0CmJqj4lyY0DYK1BFe+jTQxJhMmdIBo6RZKEVCqV7r35AeAE0McopViYOMGtO5W97Qxv
hZAIYyCJ8B/datQZ0j54WcLsOI1KdQKEICfibfvz9gpOAH2MEIKr56f59Pbn1DN7yw4DEGEF
9fQ+NjeKrDwjFj4yXCU8NQ+2MVdYD5XWJ8mFlOHUyd7eC5DGGOI4JkmSte/HwcTk6IzJiQkm
6o9J/fBdw+G5y/+tqK2if7hDnDmFCSJsGGKtwWbyWNu43tttcgcuni30fEVBXa1WCYKgpQVO
Pp93laD7hPzwMG+/tsSn90uo5TuEw2ew6fVuj+3+x+r5I+pDE40NMe1jUllUElH32yTBm5i5
yelufYwDQ6ZSKbTWpFIp0uk0Q0NDruVRHyGE4CevX0NHAXJmDlle6fi5zUjASL32s02lX1it
dxCOtZyWNa6/trSfUz8UtO/7uKT4/mZsbIw3Tw/zWZTFP3WS8PljktwoKL3zXSCsIeOYVFgk
yoy3/GmnO4dvAn518zoj+d3nJBw2bh9gABBC8N71VxkqPcGOncYfy+Ov3EFUiw3n5+aNrKZV
wksTjZ5B1KstA367RtkyqZN9fJulTJlrS5cP5bPtFyeAAWF2eprff/AO+eozbOEEcu4yWd+Q
fr6MDErr1ueggio/RRYfoR/fQRWfEg036vi0c5MKE+HVS9xYWjw2YbQTwDGguTq3H4QQTE1O
8tHVWUR1FTwfc/oVWLxOenUZ7/7XiNIK3soyNqhD3WJUjig/0Shqxcthz+bHSSpHrTDD3IW9
1SM6CpwAjgHf373Lykrnk9ftEELw2uVF5tPr5dFtUMVWQ8LsaUQtIEqPE6dHiNMFYn/d77Px
NXZKh7TKRxwDG3ST43OmA8z5c+e6tqOaTqf56J1rZCrPARCZHFy5TjZ4SOznSbzGgki7gb4d
kTfE199815VzPQycAAaQqclJXtHrBiHrpaEwSrZ2D2nifYYvglKluv+TPCScAAYQIQRvnZ9G
1BsZY0Ip7NQcaN2wQO+DVPUJ1Urp2LgJnAAGlFcX5/HLz1p/OTGLFxd3bZfYSJweIU72nkx/
2DgBDCiFkRGujGYQG5vl5YYRJmLXvYc3YJVH1Si3CuTobaSUXJ+dQkTrKZO2XscY2Vmnlx0o
B7vo23rEOAEMMAtzFyhsKKKL1igNfuUB2eK3kMSdNUm3hmlV5ueXhnhztM7EeO9bIJocj+06
x4FQGBnh0rDPX188FkrDxasok2Dv/Q86DOUzcZXf/fJ9Zl5puD+PywQY3B1goBFC8MbFGfTK
g/VfKg0pH2GSzvYCrOXssGZ8fL2YbjNR/jgIwQlgwDk3M4PYPFCthTjBblHxYTMnVMhvPnyP
oQ2OYmMMlUqFSqWCMb29IuQEMOBks1mG1WY3qMHaBFFrUxbRJNxcPMPUFk3vtNZIKQnDEGNM
z94NnAAGHK01F8Zb84WFVIiLS3jx6o7hjzSNDpJRFLWUQpdSopQiiiKq1SqlUok4jntSBE4A
A46Ukhvnp5HBpvIlzx8Te9sn0ss4YNKPeHD/Hv/+6iv++KdPWga4MYYwDKnX6wRB0LPhkFsF
cnD54hxnv7jFPT/bKH1oDPbpUxJ//KVjR0WNd8+Nsji3wJWF+TXf/8L8/Nox1lqiKFoLfYQQ
hGFIJpNBStlTm2ROAA5y2SxvnS3wybM6NuVh2XoFJ1Wv8NsP3+LKwvxLgziTWS+/mCQJQRC0
pFtaa6lWq2ite6pShAuBHAgh+ODm+yypGrwIU8QWzTF0UOTy/KW2V/BmaZ3Ny6hhGFIul3tq
LuAE4AAgpTW//tlPmU1KCCkRWr3UIaaQy7Qd/MaYta+tjo2iqKcmxE4AjjUKhRE+fvcNxkqP
ScK4UfbQWrAWL65y88Z8+xcB6vV1L5AQoiXuN8ZQKvWOXVqUy2XryqI4NnJ3eZk//PkzvnoS
IQXM5jW/ePdHXFlcaNv1xRhDsVgkDMOW8GfjCpCUktHR0Z7oI+wE4NiSWq3Grf98i1KKSxfO
kU6nO3qeMYaVlZWXrvBNATRFkc1myWazR95GyQnA0VW2EsBGX1BzwEspe6IEp5sDOLrK5iv6
dqa45kbZUc8FnAAcXUepxuS5uRHWXBXaWFHOWkutVmuZMB8FTgCOriOlXBvkm+0Pm0UQHXEz
bbcT7Og6zTCoGd7sWEjLhUCOQeWoBz84ATgOgN0sbR61L8gJwNF1PM9rEcFOV3rP8w7jlLbF
CcDRdbTWHZVHz2Tae4sOGjcJdnQdIQS+76/lBDQHeXMyLKUkl8u9dKc4CpwAHF1HCEE6nSYI
gjXnp5QSrTW+7+P7Pkr1RvU4JwDHgaCUolAotOQGKKVcRphjcFBKHfkqTzvcJNgx0DgBOAYa
fdReDIfjKPk/tYfchJucDYcAAAAASUVORK5CYII=
</thumbnail>
<thumbnail height='192' name='Suicides/Reason' width='192'>
iVBORw0KGgoAAAANSUhEUgAAAMAAAADACAYAAABS3GwHAAAACXBIWXMAAA7DAAAOwwHHb6hk
AAAgAElEQVR4nOy9R4wc2Zrv9wuT3pvKyvLekkXbJJttb9++92rMkyDpPWjwRoI02mgArQVp
J8xCkBYSoJ20EGYEaFYPMg+C3sy8mWvbsatpisUiWY7lfaX3NowWxWazMqJI3iGbXdMVP4Bg
VkbkyRMn43/inO/7zncEXdd1LCzOKOIPXQELix8SSwAWZxpLABZnGksAFmcaSwAWZxpLABZn
GksAFmcaSwAWZxpLABZnGksAFmcaSwAWZ5ofVACKomCFIln8kFhPAIszjSUAizONJQCLM40l
AIszjfxDV8DCyP0n++wmi4b3Qz4n70/1/gA1+vFiCeAU8rv7G/xudtPw/lhPxBLAG8YaAlmc
aSwBWJxpLAFYnGksAVicaSwBWJxpLAFYnGksAVicaSwBWJxpLAFYnGksAVicaSwBWJxp3kgs
UGJlht+sVPkXH4zwm69m0SU7716/wN2v79AUZG58cIm99ToRd46SI85wZ/hNfK2FxWvz2gJQ
all2ym4GYgLpgyxTNz9ALu2y9XidoRsfEKilyGVzJLZ3KLfHuHopjKZp6Lr+7H9BEN7Etfxo
0E5YJqrrOoqivOXa/Lh5bQE8vjvNbl4glcnhPT9BsO3ohxJFAVXT0XQNQRBx+wJo9QqaDvLT
G14QBERRtATQgsAJ7fG0vSzeHK8tgAvv/wEXdJW5hWUmhjv57Iuv0O0+bt6Y4u6Xt9iQXNx4
b4pm2UN7sMbaVoLR/hiiIKBpmiUAE05qDgEsAbxhXlsAgiCAIHPx3CQAn/zs58+Offjpd69H
Ro7+97e97jdaWLw5rO7E4kxjCcDiTGMJwOJMYwnA4kxjCcDiTGMJwOJMYwnA4kxjCcDiTGMJ
wOJMYwnA4kxjCcDiTGMJwOJMYwnA4kxjCcDiTGMJwOJMYwnA4kxjCcDiTGMJwOJM89pLIvOH
G9x/tIomu3n32gTf3LqDJnt57+YF7n55i5rg5OYHF9jfrBP1lsjoQYastCgWp4TXFoA/1sOF
KQebm7scbB0weu19bKUd1maX6Lx8k2A9SSqVIZMokMsLXL46gK7rz/5pmmYtim/hhKwo6ICm
aW+1Lj923sCieI18Jotgs6FqIApHC+U1TUcSBURBRNcUKsUsTnsEENB1zRLAC9A5SQG6JYA3
zGsLILm5yvreAaoGXRcnuf/1lyA7uXHtPHe//hJFsnP9vQvEelzE/EWebCYY748hcpQ/SJIk
SwAtiCe0hyAIyLK1seeb5LVbM9o7xie9Y0d/CPDzX/z82euf/uIXz14HJwE6iL7uF1pYvEHe
TF6gY2+8wmsLi1OCZQa1ONOcmQFludYgX6qbHuuIeK15yBnlzAjgiwdb/K//713TY//6v/uT
E/NxWvy4eYkAKvybv/5XbBWrAIhShD/98z/B/xYqZmHxNniJAFz88X/yZyiNKul0Dl2w4X47
9bKweCu8RAACgqBz75f/F7+czRNpC/Cf/fl/enbGTRY/el7JCiSIbjrjLnLJAo3vu0YWFm+R
V+rMu0evMPWzDjbn13B+3zWysHiLvFQAu4v3+Mu/+r/pvnKRcqLGn1069zbqZWHxVnjpEKit
f4Kfvn8JpVqh5/x5fG+jVhYWb4mXCsDudKM0VP74T/4M+84S6bdRKwuLt8QrzQF6h+L86v/5
V+j2oOUDsPhR8RIBFPj6yy3eff8TuibrSHb7j9oE+t/+1W9JZMuG9396ZYD/6BNr7vNj5CX3
c5Pbv/pb1jYfACCKIf7df/lHeN9CxX4Iktky++mS4f1C2TyGyOKfPi8RgMjwpff4+R9df/q3
gO17r5KFxdvjJQII8OkfXMdut7+d2lhYvGVeYgUScTqtm9/ix8trz2kr+QSzD+ZR7X7euTTG
3N27NG1Brl8Z4+GdbygLXq5dGyWx2yTsqZJVPfS2B99E3S0sXpvXXhFmc/p55+YHdHk1djZ2
aBu7xEBMZn1+GXf/Bca6fCRTWYr5Iisbh8QiliHV4vTw2k8AWRZZfTKPMzaKVDxAdNmRVCep
3RyhATuOipOK2mBj8THhkXHskoiqqmia9uzf20BRlROPNZoNREE4MR+Ppmk0Gm8vDPCkNtF1
/a3W4yzw2gLYX33MblYlyiFdYRdzc3NIWpPR8SHmHzzEJjYZuTDOwLlrBBwZNg6yDHSEkCQJ
RVHeWloUWTr5Uu02O6IonLgqTBTFt2oIEEXzB7MgCJZB4g3z+mlRekaQgxUQJTyhEFccHlTJ
hd/r5J2LTpqCg4DPgX9Yxy7HqClWYieL08NrC8Du8hJzfecaswW+y/vp8YeevXY4jv53Sa/7
jRYWbw4rLYrFmcYSgMWZxhKAxZnGEoDFmcYSgMWZxhKAxZnGEoDFmcYSgMWZxhKAxZnGEoDF
mcYSgMWZ5sec5MHiFLCxn+Mf7q6aHvuPfz6F5wdecWgJwOJ75SBT4m++fmJ67F98PInnB042
awngLbOVyPPf//UXpsf+63/5PoOdIdNjFt8PlgDeMoqimeYeAmgo6luujYU1CbY401gCsDjT
vLYAlHqZpQffcFgGXa0zd+cWdx4+QVEV5memmb6/QFOrsL+fp1pIsZfKv4l6W1i8EV5bAKqi
0ua3katBfncTe+cYMXuJzeUlmqFBuv0qB6kM6VSeJyub+H0/1syiFv8Uee1JsMPjR3I7SALV
pkAk4kG0BdlZyhC57MVXbpBpVtmYf0R47Dxeh3Sm06I0m80TjynNJo1G40eVFkVRTm73ZrNJ
o/HDLhJ/bQE06xVSmRw5OUXcI7K4uomjniY22MnG0gZe8rQNDjJw/gZODtlNl+iMeI+lRXkb
vCwtiiDwwrQoNpuNrUSev79t7tT5059N4XG+PHWwzXbyObLNhs1me2FalBd9/jQiyye3u+3p
9f6QvL4AahUyagAPaeTIIH3KFg37OB3xEDZ9g7IYIx4K4JVVPM4w+arR1Pc28gK9jJfVQRAE
EpnyiU6d/+DDcbyu1/dqvko9fkz80Nfz2gJwB6KcC0Sf/e3pHXr2uq17gLanr32+I6WH/ml1
YBY/ciwzqMWZxhKAxZnGEoDFmcYSgMWZxhKAxZnGEoDFmcYSgMWZxhKAxZnGEoDFmeZHsyLs
r/72PopqDCJ7d7KbC0PtP0CNLP4p8KMRwL/9ZoV60xhn1BZ0WwKwOBFrCGRxpvnBnwD1psL/
8fdzpsd+emWA4a6w6TELizfBDy6ApqKdGGI83hu1BGDxvfL9CUAp88Vnt6gJTm5+cIH9zTpR
b4mMHmSo07qpLU4H35sA8rs7dF66SbCRJJXKkEkUyOUFLl8d+L6+0sLi9+Z7E4CuC0iSgCiI
6JpCpZjFaY8AP64VTRavz//+d7NsHRqzhZwfaOOffzz5vX739yYAf7yNe599iSLZuf7eBWI9
LmL+Ik82E4z3xywZWDxjeSvF/GbK8P6rrLF+VWoNhV/dXTO8/70JQHQG+ekvfnH0hwDBSYAO
oi/60I+AdL5i6o9wOWRCPtcb+Y5qvclf/4O55exnVwcZ7Axxe2GX2ZUDw3Gvy86f/mwKgL/8
mxlUzZgK4+a5bqYGX8138l/8j/8fh9my4f1//4Mx/vM/uvxKZbyMJztp/qv/5Zemx/6n//Ln
jHRHyBarVOvGDBR2m0Q04KZSa/K//ZsZw/Hv0QokHM+y8NxrTdPQdP2VU6LspYrsp4uG922y
dOqcXP/z/znNw7WE4f33zvfw3/zp+2/kOxpN9UTL2bn+NgY7QyxupkzPiQbczwTwt9Mrpt7z
eNjL1GA7iWyZ7YRJIjNB4Opox+tdxBvmL//mPl/MbRnen+yL8j/8+c9O/Jyg6ydlw/n+0HUd
XddRVRVRlI71ILquIQhH/rmQz4lNEqg0VEqVo3w4mqY9SxsiiQLRgAtBEDjMlp/l9Xn+HL/H
gdMmUlc08qX60XFdQxS+8wHGwx50XSddqD27IZ4vw+Oy4XHIKBpkCtVn13Ak8CNlx0Ie0DXy
5cazJ8DzZbgcMj6XDR2BZK7yrAz4LjNCNOBGFHSK1eaz3uz5Muw2iaDHjiCIL2+zukqpatJm
kkDU/4pt1tTIl+uG48+3WapQQzVpM6/LjtshoaiQKZq3WXvIg65r5MoNGi9oMw2B1EltFnQj
8vu2mY6uH5XxgwjgW77NC/Si1BjNZvOFuWNUVUUQBEMunUq5iGT34LCJLy1D0zR0XX+Wo0ip
VylVG4iSiNvtQZZeXsa3gn5RHpyXlfEq53yfbfb7lNHaZq9chq6TKxQIBgKv1WaKojz73Ou0
2Q8aCnHSD9BoNJ4p3bSBNZV6Q3lWhtmFSaKE+PRtszKajRqK+l1v8nxd1hbus76bpFAsoWgv
qMdLr0enVqvxbQ/zKmW87Jzj36FTLeXZ39unXG08681Ny2hWSWSLz8owa7Nms/FsTnC8DJ3s
4RbJbJF88agXNROQrr/a9T5/wz9fhqYqpA732dndpfy0Nz+pjFTqu0nz8+co1QL7ydyxLH9m
95mmNqk3lB/WE3ySAEqlAv5ABFk64RytSaHcpM3uO7EnrJSL2L12bLJ4vIxamunFQxqHG9ja
B7l5adxQhlMSWE8eojf9+INRnDbpeBlKmV//6nOcPh/bm5uMXv2IK2M9x8pJbi2wvV+gUM7T
PvkhE3HX8TI0hVuf/xZvWxcOd4CxgS5Dm9Qyq/z9V+v45SKJqo0Pf/4HdPqOfrJqMc3K6iY2
f5Soz8ne5jLVpsjg2Dheu0mbSXaC3qNe8qQ2q5ZL2D2Bo87j+bpWU8zdvY3SfhG7XuXDaxcM
ZazOz1Irl9it6ExevEF30H7C76uTzxfwejxHQ5Dnyjlcf8R+M0hP1Iv09P2T7hFV/c7Q8Pw5
os0B9T3u313CHu7h3FCnoYx730wjiyq7JeF0BsM1G010XjAy0zUaTfOck4fba+wepnAFIrgd
Jr2HKFNPr+OKjSAJ5pPw7smrXJ0YprevD6/LpI/QdWyeEFMXzhMO+Sjkc4ZTJEliJ5GnvzPM
SXN9UbAR6+igPRI86TKJdA1wYawPv0fmIF15dszu9DF58TJ9sQAIIsFIO/2DAzhOuCaUGsms
+cYc3yLLMqKZOGxu3E4b6f0NHG6f6WdtksB6oslQh+eE69Up59Ps7B4QjLSZnYDL7SGX2CeV
TlFTjIXomoamqaiqSrzDfBKuKw0SyTSSO0xEP2T5oGI4R9Iq5BQPYa+E9Bd/8Rd/YVrSD0Cz
WmBtfYOqKhEJBUx+DJ3U3hbbhxlcvgBel8NQhtcfoJzaZubhMtF4Fw5bi8YFkVJiF9Ubw+u0
0xY23nxbSw9I1m0UtudpejsJtIpAshH0yBRKFTp7R+iKR3E5WtIi6hqKplFXZTo7YrjtRjHa
bALZTA5FkAn5PYbjsjOAXS1RwcPIUB+xSBC79LRnlCREQeDWZ79BtDuZuXebnWSRieH+7wpQ
G+QLR0OkbKGM2+s33ZRObZTY2E0jKHXsbh+y1NLugogmOmlvC9PRHsNtUobdYcPl8WB3BoiF
fchSS7s3Snx55xHxNj/359cY6Ok0lJE52MbWNszEUA9Om7G90ukU6YMdtncPyJaatIUDhnNq
mV2K9i6mRrrwhTuIeo1zA71R5LAqEHU7T9cTYObOHRY2ttjbXH029j5GaZdb0/dY30myeZAx
LSO9v0GyInH58iW8TpMnQC1DKlciV65zkEqblmGXJcqVMpVaE1vrDwmgVLn/YJ58sUyl3iTk
N6Z8L2QOsQW6OX/+HGGP+QQttbeHoqts7eybHq/ntphd2qVaLdMUPXjsxt65ze+lgYjTG8Eh
tGSeFiRcLg+RaBSv22UU6VPm7s8xtzBP8mCbYs3kyVpJsbBdoC0aNb35AdafLKPb3AQCPmTR
5CkiCDRKebZ3D0jsrLG2a2x7XyBEZmeZmfuzpIvGLNjRaBSHLNBsNnC4zdPsS3YHj775DXfu
zXCQNfb+ACvru2hqnWQm+cNHgz6Px+2jzd6gWDvhBJuDcKwDtV7hpJCKcMcA4Y4XJF11tTM6
MsTKQYrB8SnTU+LDFwhXK6jSCC67+c0rSQ7a4x047ObbHMqSwN7GCmItSEfvEMFWEega2YrC
+fFeDu7OmtdVEHB7A8TjcZwu83oMnr9Eqdqgt7OTgNd9/KAoYa9v8ZuZFLbyPvbeKT6cMsZi
RQIelvcTHORkeh0mt4Tdg148YGVFwx/rYbjbOIQJuu0srK+Q93sZHh3H72rpOGQ3H3/6KY1K
nsGxc4S8RqegLsp0x0Ls7CdpmvXNapPFzTQffHiTzz77jKHOnxhOsXki/PSTj0DXcbvNxXr5
0hSzSxsEO4ZOlwB6B3rIlJp02ZzYzHoRe5DerjhIEt6guU+5lDlkL5VH1zQ8oXa628PPHHJK
rcxBKkND9DHQF0DCfLy8t75MrVpmM1Nn8uI7xP3P3Xy6joZMX187mVQShzeE3+TH1FQVWXbg
cDowe4housDU5DD7OzuMn7tgPEHXkBwh2oM1kskkEcmFy278ue5O36Jr5Dw2RcfvdRu7BWcQ
p7pG58gETVtLPTWVvd1tXPFh/sOBcQSb3dh76zqa6ObTn3+KDgiiuVUmPnSOhm2buiYimf12
jQLT9+fRSg1w2vn0o/cMp5RySe7P7TI+EmI3XSXua5lvCCJ+m8LM/fsojQZLG/uM9R+fC2hK
nXQ6TXl/BbXvPa4NGHfd3D7I8+57HyALp2A9wPPMPnjM+avXkSXJPFd/YYf5/Srvne/G5jDv
ER/NL9A3ep7t5VkerO7yz//w02djWlG24ZdrfLVe5uZYlNnVDTqiFw1l1Cp5ZuYPmTrXRrGm
HBcAkM3l0FSVZkNBOmFnR4c3zECfnYDbhl02KiCby1Irl1BUjVKxBLGWuYhSI1uqPdtgQj3B
XePUm+wcJvC4fHTEosYHoz3Exz/9qelnEUQCgSDZ9A5z61UEycHkxOjx8beuks1myKTT1Jsq
vkgnfR3GcPaVxUfcXtrlXIefbKwHT+v0zOYh7hKRuifR6wXT6rT3T/JRZAC3Q0RwmAxxRJnL
Nz8yv5anfCsAta5w0hbEemmXv/91ho6O+CkRgFJncWmRRrnM4+UVPC4vFyaGj03GSuk9ljcT
NJJpVlZqRDoH6Isb1T3QHmEnmaGJk1hIPiYkUbbjj/UQenKXRFrE4zVaNNRmnfa+MT5q6wcg
GG75JQWBSDjI3tYmotODaNbbAYLWYHMrxdR4n+nxUMDHN+tbXL98kdt37sJQ9/ETbG5CniIL
iTSioHCYKXH93ev4njNx1mpVxq99QLWhgGTDtCrVNGtZiaFOc0uTKIrINju6UgRBNu6SI8pE
Qj421zdxeb0nXq/T7qK/zU9FkNHN5m+ijfFLN57+YRxCqbU8+6kCqVQaBJHeoXEc3lbDgk6p
mKPWUNF18PgDuJ/vCHUN0R3hxo0IYD4MrlWr9E5co62hgGQ/JQKQHYyfu0hbtINArI1cOmWo
vDfSyZVAkK5elahfJFsx7xF9bXFCuQr28AjxWOz441hTyRcqdPV2Uq2rdLdFDJ/XNQ1FUamW
i2B3ETDredUG+ZrEzcuTtBpMvsXhDdPVppHLZhBsHhwtVo3U3gbra6t47DLuoLlZsFlM4+gY
53Iwxa8ebPNkr8SVfv931VA1FKVBvd4EmaMhSmshosT8nVto58cJRdqJBp+zNukqmXQSXGGu
vtN/8rypUaSgebgyMWF+HAhFAjzYSnOlK4zDbB6hK6zcnybr6sUr1JgcHz12uFAs02g08fv9
gGBufNCaTH89TXf/IHOz94j2TvDTm88F3DVKHKSKZNJHE+xaIUvH+Zv0BL8TkqppVMolGpoA
8inzAyzMP0YFniwv0DCxA1NN8ng9iV7JML9hbjl5/Hgerz9IwGfSWwkCLpcbfyBMe3ubqRlV
drhQi0n2sxX2159QNtvSS7Tjtze4PzPD/Oqu4bCu65SLOfKJXR4u7yCZ/JixnlF+9t5lKqUS
tYa5T8MZGcBT22Npv8bESD+dkecmuWqdxP4u6xu7FIoFksms+R5nsocPPnyXSDiEuzW8WJTp
6huiKxY68eavF5LMLGwj1tPMzMywspM0PW9re5dyrYraKJIt1o0nNErsJdIUqnUOEoeGw25v
gGg0SsDrwRcMGs3XAKJEyO0EUcAdiCHpLZYih5941IfWVLHZbPSNTxFpmYx7PB5kQSWZTHGY
TJ8uP0A04GBhcQ1/Wy/xiImX1x5AzW+zk64yOjKMy8S2Xk/tsJoqUC5VCIcjx3sSQUBqpLj1
OMFYt5/ph0/o7zY6VPa21nFHu3EpGRqudqMZU9colwvgCNAVj+BsMS8++OLv2K55Ge90kZba
mOgxWQKqK9yd/pqapw2hkqevt8d4jgAOl5tQNEooGif4vD9CkAiGIzxZXubSO++wtbpAe2eP
cRKr5Pnl3/wdNRwkyypdbUbb+fbyHI8WV3iyvESqDJ3PCUJ2eOiIeChrXs6PdJLKloiGjGWE
Al4qxQINMcDoYMczT+4zJAduO2SSB3QPTRHxH5+QyzY7ldQGDzczlPeWUYO9hAxOSIFgOIRs
czI0NMToYJ/hHqkk1zjU27kw1ofH7cIuG++Rg61VSoqAy+M/XU8Ad7iTK1cuMT7QYd4jCQLD
kxe5dOkiIY/RxFUtF/F3D9HbFibo95lbI5xhQmKR+aVV2uNGZ4xSK4HspJhOIkcG6Y+axPAL
Am5vEKGS4MHStuHwxQ//kIv9IZL5Okpml1zF5DEiiHR29xOUmtBqnfn2epKrTD/cpFAoGNcY
PA0jGO1p4/HCIoI9YG5/b9bQJBvZbMbctwLs7Ge58u5NYiEXm5trRh+8rrG3vcnB3i6pvLlt
vVIuH/WuNoFGw8QwoFY5LAm4bSLZlHGdAhwFrTldHnxuB/WmyQhAazI9fZtKtUqpXDW9R2zu
APmdBe7fv89hrmr6PeH2TiJeOzu7+6dkDvCUma9+jRjowOH0MDrYa7yBKwf8zRdLDPbGCLR1
0Rn1HztsszvxihJ2pwcEE3OcppBMpXF6XJRrTUImQ5P7d+/QOXqOzYUnXLl4wnI8XSN1eAAO
L10RY+8uCAKBSJxCqcKHI1M4WnshXaPeUOgdHjsK+hPMTYuizUE5s0HCqyG5Q/ift2srNZaW
n1BtHG0563D7TcvA08Gnn35CoaoSbTOfa0xNDrA4v4hgC3FupN04j3AEuXl1glKtwdUu47wJ
4HBvj3DPBB0Bl3n8jq5yuL2A5B9BKJg7MaM9Y0juDIrYRjRs1vGIyEqVvcMEHl+YzlhL2+sa
kifGhx8c1VGSzS2F1XKBkmLjysWJ0yUAVJG2jg7csmxuBhUFHA4f8Xgcu8to5JJtNua++R2q
rwOvy83gQB/S83ZrQSIajREItWGTRZomJsyyouNzOlGbVQrF4rNw6GMIIn6/h2xFpVYz72UA
Go06mi4Y5wBKna2NTRRVQ1VVbN7ws2C457H74gy0b5PLZgl2tfSIkoPRifPP1laAYG4FKu3w
D18+YXK4A9HhoSNitHwVCkdRog6Xi8F+47CCZpF7n/1blgs2egdH+cVNowPRLmmsr6xQDHjo
7R/A0zoRlr188OFPKVXrCLK5ZexwbY6HewrdMT92l5eg+/gNXK03uHTzQ+pNFdFmYuRUamSz
JVJPJ8FtXQNE/cbz2ntGaBcEdF0/XUOg/rERavks2XzphAmdn8HeANlslkrNfMNppyQjO504
HHbTR6Ra3Oebxxs0Slluzy4Yjl86P0mhUGByfPxYOPQxBBGXx4fX7aQ9FjOtR62YYmXjgMLO
Etv5lkmuzcXI6Ch2rYaqa+SL5sOKamqNJwdl2kM+0uWWCZ8gkMtmONha5fHjxzx+skFrVavF
DGt7KWRRxOFwmFtWgP2DDCMTE0yMDBqsVQA0q+jeCF3tceQTgu0URcXucOBwOMwD6pQK9778
Nb/65gG3Zx4aDueSe+ynithsNhwOp3EOwVEEaLNeJZPJUmsYf/9yQycU8NE3OMrExITpzQ/w
8MEDFODR44en6wlQSh/y+LBJf8iO2hk3elAFla2FOXw9E5TJ0xY0BpANXXyHck1BECXjEEhX
2dvZZmezSEjqoK+v1/D5YDSOucX8OZQKj1d2uXJxjDuz9029mtnDHTLlGmqjwH66Qk+gZYii
q+ykyrz38Qd8/rvfAiOGMuyhTi6NiZSKOWIB45AgFI5QTO1SKhVRbcYbRra7CAXbODcVJ+iE
2gm7tnfEAjyavY/d7mZyfBTnc8aFRinD6nYKfzCKvVIm2G6+BLV3/CLhSgNBFI3BdABoCE4/
gaaMYCIip9tH/9gUjWoN3WY3dR563W6W5+7jCkdZ3dilq2UItPZ4BhWVnNzNRJcPbyBsurBe
rOdZWFpmP1U6XQLYS2YRVYlMrvrU89k6B8hQaIJeLCDr5uO7xzPTz4ZAbo/n+BBIlOkdGGCl
mGFypIvPH6zREzMu3N5YmIXIIP2xE8bVkh2fpLC7s43TZ57kK9LRx1Cqwk7RweVxkxBiQWZy
MMb0558R6RozHC7n06RzJSS7nbaOLgJmgX1Az8gUPSM607duoWr6MdHbbDYo7jN/4OFaXGWt
7KEzetyC06jX8Lf3MhRsgigbhntKo0omk8MdiDIw0kMweEL3IEgEgkFzwwOA7OXqtetPQyWM
N7fT46OaW2Jxu4K7nqA69RMGWp2QqFSa0NvewebWbYrlYXye7zqG8+/cZG/lEc2miHpCDLqu
60xe/5BqucLE8PDpEsDlq1dY2dzDG2rHadID4OvhxpUGyaJCz6CJ2ZCjIVD9BUOgIyvQ5lMr
kHHcDRAMevlmboZMNHIU2OVuFZvI4LkLuBwOxp1GXwJAOZ/CEe7jwkiX+XxGV1nbPqSjuwfJ
xHFkc7gI+FS+uveI969fNR+aANtPHrKTKlLDafR76DoNwUnYLaK5wlzrNU6CNU0jdbBLQ/bi
djmfrsP4rhx3uIv33++ikt3j67v3CPdOcnnM2PaJzWVq3h6GO43eeQDUCve++He6u3EAACAA
SURBVCXF8DnczSwfvveu4ZRnViDpBCuQIDMy3Echm2V4cIhipXZMAIIoE+vpZ3t2ib2iiugJ
42kZBWWzGWqFNKlCDezeUzIHUBtsrC7zq998hS6KLM4/ptGSraCST7Iwe4tvFg5RyymWN43O
FDgaAvW1RQgF/Oa9kWgjHvHgDHcTMTGlAvjCcaJt7Qx2RpDNokF1lZX5BRRBPjG/kcPloXC4
zsz9+6TMHEOCiE1rUqw1TBf32J1uAn4/TpebQCCA0xAIp7O/sUTNHqUj7KOzq8swblabVXYz
FaRqlq3tXSom6VqcLjfxrh7ERpF0JktTOT6RqGb3uXv3Lk8Oyly+dpOpEfNOw+v3sbc6z8yD
hxSqZvMzAQGdzP4mZcW83410jTAY9xPsO89wzMw0rJPbW2clVSOXL9DZZhRbLbeHEOznfK+X
lT1jzFE4HCGRzDM+dYEL44OnRACSnf6hUWIhP/GuHpx20FpmdO5AGxMjA3h8Qfq626nVTG4q
jiZTi4vzzMw+pGJmj64mWFp6wmYiz/zqhmkZK4sLLG1sUs3tspU05rzRdXA5dObu3zP3BCt1
NJuf8fExent68JqGBqgUFBvnJ8cZ7Tf6I/KpPRaerNMRCbCwsEAy32JtqqVZ2K3jKm2TkiIk
t5cM3vPNlSWCPZO8e/Ndro5EeLhsTBsC0KjkKVQURMmOrcUDK9kceDwe7Cgc7u+ynzRJkwJU
KxUWtxJEpAq52vHfTlfqJLNlhi9/wHsXxrh+yTykYm/tEZmmC3d1k9lNk4A5TSWVK9KslUnn
zAPqvLFh/M09Hh8KvDNsbrL12Wv8+tdfMPP4yekaAl28epH9ZJbh0SnTFUF4OpjqVygocGnM
fElce98Y7X2jzM98TbWp4Ws1BNiDRMM+VpPb9A8bx94A8Xg77u0E64d1JnuP90S6rjB75w7e
9m4ChQSyyXqAdDqNbLNxmMoQ9Htxm5m0BJGgU2Nm5j5OT4iL48fj9APRTvyRjiOHl1klNR1V
q1FrNijVSyhNoMWFFYqEWdh4glSPUjjcoy1ufr02uxOf14vD6zM8RezeMBMTL09mXK3Vscsa