Skip to content

Latest commit

 

History

History
324 lines (217 loc) · 13.5 KB

README.md

File metadata and controls

324 lines (217 loc) · 13.5 KB

DPSleep Modules

There are six DPSleep modules. They are run in tandem. Their dependencies are:

  • MATLAB >= 2017a
  • Python >= 3.6
  • pandas

Installation

  • Make sure you have the stated MATLAB and Python

  • Install Python packages:

    pip install -r requirements.txt
    
  • Finally, clone this repository:

    git clone https://github.com/dptools/dpsleep.git
    

    Individual module scripts are dpsleep/dpsleep-*/*py. Learn more about them below.

DPSleep1-extract: Step #1 extract the raw data

Table of contents

  1. Requirements
  2. Usage

Requirements

  • The Raw data is saved as a .csv or .csv.gz file with the following naming format
STUDTY_left wrist_WATCHID_YYYY-MM-DD hh-mm-ss.csv.gz
  • The Data has the following format:
    • 100 rows of metadata
    • Actigraphy data from row 101 with the following columns:
YYYY-MM-DD hh:mm:ss:mmm|accel_x(g)|accel_y(g)|accel_z(g)|light(lux)|button(0-1)|temperature(deg.C)
  • The output directory can be edited. The default is ./processed/mtl1 and the files are saved as mtl1_YYYY_MM_DD.csv and mtl1_YYYY_MM_DD.mat

  • This step is the longest part of the pipeline and it can take hours per subject. Running that in parallel for different subjects of a study is recommended to reduce the execution time.

  • After this step run dpsleep-freq step

Usage

The default is that the pipeline runs for the new files. The --ext_mode can be [ new, all, specific ]. If all, it runs for all the files in the subject folder. If specific the files after --ext_date argument is analyzed.

# To generate reports under every subject's processed directory in PHOENIX
geneactiv_extract.py --data-type actigraphy --pipeline geneactiv_extract --data-dir GENERAL

# To generate reports for every subject and save them in ~/dp_test1 directory
geneactiv_extract.py --output-dir ~/dp_test1 --data-type actigraphy --pipeline geneactiv_extract --data-dir GENERAL
# or
geneactiv_extract.py --output-dir ~/dp_test1/ --data-type actigraphy --pipeline geneactiv_extract --data-dir GENERAL

# To generate reports for STUDY_A's subject B under ~/dp_test1 directory
geneactiv_extract.py --output-dir ~/dp_test1/ --study STUDY_A --subject B --data-type actigraphy --pipeline geneactiv_extract --data-dir GENERAL

# To generate reports for subject A and subject C in STUDY_PILOT under their processed folders
geneactiv_extract.py --study STUDY_PILOT --subject A C --data-type actigraphy --pipeline geneactiv_extract --data-dir GENERAL

# To generate reports for subject A and subject C in STUDY_PILOT under their processed folders
# Define the PHOENIX, consent and MATLAB directories 
geneactiv_extract.py --study STUDY_PILOT --phoenix-dir /data/PHOENIX --consent-dir /data/PHOENIX/GENERAL --mtl-dir MATLAB_DIRECTORY --subject A C --data-type actigraphy --pipeline geneactiv_extract --data-dir GENERAL

# To generate reports for subject A and subject C in STUDY_PILOT under their processed folders
# Define the PHOENIX, consent and MATLAB directories 
# Define extract mode and date
geneactiv_extract.py --study STUDY_PILOT --phoenix-dir /data/PHOENIX --consent-dir /data/PHOENIX/GENERAL --mtl-dir MATLAB_DIRECTORY --subject A C --data-type actigraphy --pipeline geneactiv_extract --data-dir GENERAL --ext-mode specific --ext-date YYYY-MM-DD

For more information, please run

geneactiv_extract.py -h

DPSleep-freq: Step #2 frequency analysis

=========

Table of contents

  1. Requirements
  2. Usage examples

Requirements

  • To run the freq pipeline, make sure that you have time files saved in mtl1. To do so, you need to run the dpsleep-extract pipeline first.

  • The output is saved as mtl2_YYYY_MM_DD.mat per day.

  • After running this pipeline you should run dpsleep-act.

Usage examples

# The default is that the pipeline runs for the "new" files. The --ext_mode can be [new, all, specific]. If "all" it runs for all the files in the subject folder. If "specific" the files after --ext_date argument is analyzed.

# To generate reports under every subject's processed directory in PHOENIX
geneactiv_freq.py --data-type actigraphy --pipeline geneactiv_freq --data-dir GENERAL

# To generate reports for every subject and save them in ~/dp_test1 directory
geneactiv_freq.py --output-dir ~/dp_test1 --data-type actigraphy --pipeline geneactiv_freq --data-dir GENERAL
# or
geneactiv_freq.py --output-dir ~/dp_test1/ --data-type actigraphy --pipeline geneactiv_freq --data-dir GENERAL

# To generate reports for STUDY_A's subject B under ~/dp_test1 directory
geneactiv_freq.py --output-dir ~/dp_test1/ --study STUDY_A --subject B --data-type actigraphy --pipeline geneactiv_freq --data-dir GENERAL

# To generate reports for subject A and subject C in STUDY_PILOT under their processed folders
geneactiv_freq.py --study STUDY_PILOT --subject A C --data-type actigraphy --pipeline geneactiv_freq --data-dir GENERAL

# To generate reports for subject A and subject C in STUDY_PILOT under their processed folders
# Define the PHOENIX, consent and MATLAB directories 
geneactiv_freq.py --study STUDY_PILOT --phoenix-dir /data/PHOENIX --consent-dir /data/PHOENIX/GENERAL --mtl-dir MATLAB_DIRECTORY --subject A C --data-type actigraphy --pipeline geneactiv_freq --data-dir GENERAL

# To generate reports for subject A and subject C in STUDY_PILOT under their processed folders
# Define the PHOENIX, consent and MATLAB directories 
# Define extract mode and date
geneactiv_freq.py --study STUDY_PILOT --phoenix-dir /data/PHOENIX --consent-dir /data/PHOENIX/GENERAL --mtl-dir MATLAB_DIRECTORY --subject A C --data-type actigraphy --pipeline geneactiv_freq --data-dir GENERAL --ext-mode specific --ext-date YYYY-MM-DD

For more information, please run:

geneactiv_freq.py -h

DPSleep-act: Step #3 activity scoring and sleep estimation

=========

Table of contents

  1. Requirements
  2. Usage examples

Requirements

  • Before this Step, make sure to run 'dpsleep-extract' and 'dpsleep-freq'. Folders mtl1 and mtl2 contain daily time data and minute-based frequency spectrum data files.

  • This step performs the main analysis on the data that was explained with firgure 1 in the paper including:

    • Watch-off Remove
    • Activity Score Classification -> Outputs color-coded activity score daily map in mtl3 folder STUDY-SUB-geneactiv_mtl3p.png
    • Activity Level Classification -> Outputs color-coded activity level daily map in mtl3 folder STUDY-SUB-geneactiv_mtl3act.png
    • Sleep and Nap Epochs Estimation -> Outputs Raw Sleep and Nap estimation in mtl3 folder STUDY-SUB-geneactiv_mtl3ss.png
  • The output data is saved as a MATLAB file: STUDY-SUB-geneactiv_mtl3.mat

  • After this step even if you don't have phone data, jump to step #5 and run dpsleep-sync. If you have phone data, you can use other processing pipelines such as dplocate (skipped step #4) and integrate the phone with actigraphy data.

Usage examples

# To generate reports under every subject's processed directory in PHOENIX
geneactiv_act.py --data-type actigraphy --pipeline geneactiv_act --data-dir GENERAL

# To generate reports for every subject and save them in ~/dp_test1 directory
geneactiv_act.py --output-dir ~/dp_test1 --data-type actigraphy --pipeline geneactiv_act --data-dir GENERAL
# or
geneactiv_act.py --output-dir ~/dp_test1/ --data-type actigraphy --pipeline geneactiv_act --data-dir GENERAL

# To generate reports for STUDY_A's subject B under ~/dp_test1 directory
geneactiv_act.py --output-dir ~/dp_test1/ --study STUDY_A --subject B --data-type actigraphy --pipeline geneactiv_act --data-dir GENERAL

# To generate reports for subject A and subject C in STUDY_PILOT under their processed folders
geneactiv_act.py --study STUDY_PILOT --subject A C --data-type actigraphy --pipeline geneactiv_act --data-dir GENERAL

# To generate reports for subject A and subject C in STUDY_PILOT under their processed folders
# Define the PHOENIX, consent and MATLAB directories 
geneactiv_act.py --study STUDY_PILOT --phoenix-dir /data/PHOENIX --consent-dir /data/PHOENIX/GENERAL --mtl-dir MATLAB_DIRECTORY --subject A C --data-type actigraphy --pipeline geneactiv_act --data-dir GENERAL

For more information, please run:

geneactiv_act.py -h

DPSleep-sync: Step #5 synchronizing the phone and actigraphy data

=========

Table of contents

  1. Requirements
  2. Usage examples

Requirements

  • You can run this step imediately after "dpsleep-act" step #3 without having the phone data (no step #4)

  • The output is saved in processed/mtl5

  • After this step, you should run dpsleep-qcact pipeline.

Usage examples

# To generate reports under every subject's processed directory in PHOENIX
geneactiv_sync.py --data-type actigraphy --pipeline geneactiv_sync --data-dir GENERAL

# To generate reports for every subject and save them in ~/dp_test1 directory
geneactiv_sync.py --output-dir ~/dp_test1 --data-type actigraphy --pipeline geneactiv_sync --data-dir GENERAL
# or
geneactiv_sync.py --output-dir ~/dp_test1/ --data-type actigraphy --pipeline geneactiv_sync --data-dir GENERAL

# To generate reports for STUDY_A's subject B under ~/dp_test1 directory
geneactiv_sync.py --output-dir ~/dp_test1/ --study STUDY_A --subject B --data-type actigraphy --pipeline geneactiv_sync --data-dir GENERAL

# To generate reports for subject A and subject C in STUDY_PILOT under their processed folders
geneactiv_sync.py --study STUDY_PILOT --subject A C --data-type actigraphy --pipeline geneactiv_sync --data-dir GENERAL

# To generate reports for subject A and subject C in STUDY_PILOT under their processed folders
# Define the PHOENIX, consent and MATLAB directories 
geneactiv_sync.py --study STUDY_PILOT --phoenix-dir /data/PHOENIX --consent-dir /data/PHOENIX/GENERAL --mtl-dir MATLAB_DIRECTORY --subject A C --data-type actigraphy --pipeline geneactiv_sync --data-dir GENERAL

For more information, please run:

geneactiv_sync.py -h

DPSleep-qcact: Step #6 build the Quality Control pdf file

=========

Table of contents

  1. Requirements
  2. Usage examples

Requirements

  • Before this step, make sure to run "dpsleep-sync", "dpsleep-act", and all previous steps. Input to this pipeline is from mtl3 and mtl5

  • Output is saved in mtl6 as a pdf file

  • After this step, run dpsleep-upact

Usage examples

# To generate reports under every subject's processed directory in PHOENIX
geneactiv_qcact.py --data-type actigraphy --pipeline geneactiv_qcact --data-dir GENERAL

# To generate reports for every subject and save them in ~/dp_test1 directory
geneactiv_qcact.py --output-dir ~/dp_test1 --data-type actigraphy --pipeline geneactiv_qcact --data-dir GENERAL
# or
geneactiv_qcact.py --output-dir ~/dp_test1/ --data-type actigraphy --pipeline geneactiv_qcact --data-dir GENERAL

# To generate reports for STUDY_A's subject B under ~/dp_test1 directory
geneactiv_qcact.py --output-dir ~/dp_test1/ --study STUDY_A --subject B --data-type actigraphy --pipeline geneactiv_qcact --data-dir GENERAL

# To generate reports for subject A and subject C in STUDY_PILOT under their processed folders
geneactiv_qcact.py --study STUDY_PILOT --subject A C --data-type actigraphy --pipeline geneactiv_qcact --data-dir GENERAL


# To generate reports for subject A and subject C in STUDY_PILOT under their processed folders
# Define the PHOENIX, consent and MATLAB directories 
geneactiv_qcact.py --study STUDY_PILOT --phoenix-dir /data/PHOENIX --consent-dir /data/PHOENIX/GENERAL --mtl-dir MATLAB_DIRECTORY --subject A C --data-type actigraphy --pipeline geneactiv_qcact --data-dir GENERAL

For more information, please run:

geneactiv_qcact.py -h

DPSleep-upact: Step #7 update sleep parameters after QC

=========

Table of contents

  1. Requirements
  2. Usage examples

Requirements

  • Make sure to run the "dpsleep-qcact" pipeline before this step
  • Run this step after doing Quality Control on "dpsleep-qcact" results and saving the .csv file with adding "_qcd" to the name
  • The output is saved as a .csv file in mtl7 with all sleep parameters

Usage examples

# To generate reports under every subject's processed directory in PHOENIX
geneactiv_upact.py --data-type actigraphy --pipeline geneactiv_upact --data-dir GENERAL

# To generate reports for every subject and save them in ~/dp_test1 directory
geneactiv_upact.py --output-dir ~/dp_test1 --data-type actigraphy --pipeline geneactiv_upact --data-dir GENERAL
# or
geneactiv_upact.py --output-dir ~/dp_test1/ --data-type actigraphy --pipeline geneactiv_upact --data-dir GENERAL

# To generate reports for STUDY_A's subject B under ~/dp_test1 directory
geneactiv_upact.py --output-dir ~/dp_test1/ --study STUDY_A --subject B --data-type actigraphy --pipeline geneactiv_upact --data-dir GENERAL

# To generate reports for subject A and subject C in STUDY_PILOT under their processed folders
geneactiv_upact.py --study STUDY_PILOT --subject A C --data-type actigraphy --pipeline geneactiv_upact --data-dir GENERAL

# To generate reports for subject A and subject C in STUDY_PILOT under their processed folders
# Define the PHOENIX, consent and MATLAB directories 
geneactiv_upact.py --study STUDY_PILOT --phoenix-dir /data/PHOENIX --consent-dir /data/PHOENIX/GENERAL --mtl-dir MATLAB_DIRECTORY --subject A C --data-type actigraphy --pipeline geneactiv_upact --data-dir GENERAL

For more information, please run:

geneactiv_upact.py -h