-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProblem1.py
93 lines (85 loc) · 3.79 KB
/
Problem1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import scipy.io as sio
import numpy as np
from matplotlib import pyplot as plt
# Including this to avoid UnicodeEncodeError when printing norwegian letters
from Bayes import Gaussian_Naive_Bayes_classifier
from LS import Least_Square_Classifier
from Perceptron import Perceptron_Classifier, Two_Layer_Perceptron_Classifier
from sklearn.svm import LinearSVC
class ClassificationSystem:
def __init__(self, filename):
songdata = sio.loadmat(filename)
self.Xtr = songdata['Xtr']
self.ytr = songdata['ytr']
self.song_info_tr = np.array(songdata['song_info_tr'])
self.Xte = songdata['Xte']
self.yte = songdata['yte']
self.song_info_te = np.array(songdata['song_info_te'])
self.classifier = Least_Square_Classifier()
if __name__ == "__main__":
sys = ClassificationSystem('data/songdata_small.mat')
# # Testing with linear Support Vector Machine from sklearn
# svm = LinearSVC()
# svm.fit(sys.Xtr, sys.ytr.T[0])
# result = svm.predict(sys.Xte)
# print("Number of misclassified songs out of a total %d songs: %d" % (sys.Xte.shape[0],(result[np.newaxis].T != sys.yte).sum()))
print 'Welcome to Music Genre classification system! (type help for commands)'
while True:
userinput = raw_input('Command: ').split()
try:
if userinput[0] == "help":
fmt = ' {0:25} # {1:}'
print fmt.format("classify", "Categorize music into genres with chosen classifier")
print fmt.format("LS", "Use Least Sum of Squares classifier (default)")
print fmt.format("2LP ", "Use Two-Layer Perceptron classifier (NOTE: parameters must be changed manually)")
print fmt.format("GNB", "Use Gaussian Naive Bayes classifier")
print fmt.format("P", "Use Perceptron classifier (NOTE: parameters must be changed manually)")
print fmt.format("songdata_small", "Use small dataset (default)")
print fmt.format("songdata_big", "Use big dataset")
print fmt.format("help", "Show help")
print fmt.format("exit", "Exit music genre classification system")
elif userinput[0] == "exit":
print "Exiting Music Genre classification system..."
break
elif userinput[0] == "LS":
sys.classifier = Least_Square_Classifier()
print "Using Least Sum of Squares classifier!"
elif userinput[0] == "2LP":
sys.classifier = Two_Layer_Perceptron_Classifier()
print "Using Two-Layer Perceptron classifier!"
elif userinput[0] == "GNB":
sys.classifier = Gaussian_Naive_Bayes_classifier()
print "Using Gaussian Naive Bayes classifier!"
elif userinput[0] == "P":
sys.classifier = Perceptron_Classifier()
print "Using Perceptron classifier!"
elif userinput[0] == "songdata_small":
sys = ClassificationSystem('data/songdata_small.mat')
print "Using small dataset! (classifier is reset to LS)"
elif userinput[0] == "songdata_big":
sys = ClassificationSystem('data/songdata_big.mat')
print "Using big dataset! (classifier is reset to LS)"
elif userinput[0] == "classify":
# Train with training data and classify test data
sys.classifier.train(sys.Xtr, sys.ytr)
result = sys.classifier.classify(sys.Xte)
# Print results
fmt = '# {0:13} # {1:30} # {2:}'
print fmt.format("GENRE [wrong]", "ARTIST", "TITLE")
for i in range(len(sys.Xte)):
artist = sys.song_info_te[i][0][0]
title = sys.song_info_te[i][1][0]
# Get correct genre
if result[i] == 1:
genre = 'Rap'
elif result[i] == -1:
genre = 'Classical'
if result[i] != sys.yte[i]:
print fmt.format("["+str(genre)+"]", str(artist), str(title))
else:
print fmt.format(str(genre), str(artist), str(title))
print("Number of misclassified songs out of a total %d songs: %d" % (sys.Xte.shape[0],(result != sys.yte).sum()))
else:
print "Command not found"
except IndexError:
print "Please input a command"