-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProblem2.py
131 lines (116 loc) · 4.07 KB
/
Problem2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import scipy.io as sio
import numpy as np
import time
from matplotlib import pyplot as plt
from PCA import PCA
from LEM import LEM
from kNN import kNN
use_pca = True
use_lem = False
def start_time():
global TICK
TICK = time.time()
def stop_time(prefix):
global TICK
old = TICK
TICK = time.time()
print(prefix + " used " + str(TICK-old) + " seconds")
class RecommenderSystem:
def __init__(self, filename):
# Initialize class with song data
data = sio.loadmat(filename)
self.X = data['X']
self.song_info = data['song_info']
def recommend_songs(self, songnumber):
if use_pca:
# Get reduced (2 dimensions) data using PCA
# start_time()
self.transformed = PCA(self.X)
# stop_time("PCA")
elif use_lem:
# Get reduced (2 dimensions) data using LEM
# start_time()
self.transformed = LEM(self.X)
# stop_time("LEM")
# Get seed data point
self.p = self.transformed[songnumber]
# Get 20 nearest neighbors of seed
self.idx = kNN(self.transformed, self.p, 20)[0]
def visualize(self):
try:
x1 = self.transformed[:,0]
x2 = self.transformed[:,1]
except AttributeError:
print "No ranked list to visualize, run the recommender first"
return
# Plot all data points
plt.figure(1)
plt.plot(x1[:42], x2[:42], '.b', label='class1')
plt.plot(x1[42:], x2[42:], '.r', label='class2')
# Plot seed with different marker
if songnumber < 42:
plt.plot(self.p[0],self.p[1], '^b', label='seed')
else:
plt.plot(self.p[0],self.p[1], '^r', label='seed')
# Plot markers for neighbors of seed
plt.plot(x1[self.idx],x2[self.idx],'.k',
markerfacecolor='None', markersize=15, markeredgewidth=1, label='neighbors')
plt.xlabel('x1')
plt.ylabel('x2')
plt.legend(loc='lower left')
plt.title('Visualization of latest ranked list')
plt.show()
if __name__ == "__main__":
rec = RecommenderSystem('data/songdata_full.mat')
print 'Welcome to RecoMusic! (type help for commands)'
while True:
userinput = raw_input('Command: ').split()
try:
if userinput[0] == "help":
fmt = ' {0:25} # {1:}'
print fmt.format("'songnumber'(eg. 81)", "Output a ranked list of recommended songs based on the song listed on songnumber")
print fmt.format("visualize", "Visualize the latest ranked list")
print fmt.format("list", "List available songs")
print fmt.format("PCA", "Use Principal Component Analysis for reduction (default)")
print fmt.format("LEM", "Use Laplacian Eigenmaps for reduction (NOTE: parameters must be changed manually)")
print fmt.format("help", "Show help")
print fmt.format("exit", "Exit music recommender")
elif userinput[0] == "list":
for i in range(len(rec.song_info)):
print str(i+1) + ': ' + str(rec.song_info[i][0][0]) + ' - ' + str(rec.song_info[i][1][0])
elif userinput[0] == "exit":
print "Exiting music recommender..."
break
elif userinput[0] == "visualize":
rec.visualize()
elif userinput[0] == "PCA":
use_pca = True
use_lem = False
print "Using PCA!"
elif userinput[0] == "LEM":
use_pca = False
use_lem = True
print "Using LEM!"
else:
try:
# Get songnumber
songnumber = int(userinput[0])
songnumber -= 1
# Check if its in range
if 0 <= songnumber < len(rec.song_info):
# Get indices of recommended songs in rec.idx
rec.recommend_songs(songnumber)
# Print results
print "Top 20 recommended songs based on '" + str(rec.song_info[songnumber][0][0]) + " - " + str(rec.song_info[songnumber][1][0]) + "'"
fmt = '# {0:4} # {1:30} # {2:}'
print fmt.format("\033[1mRank", "Artist", "Title\033[0m")
for i in range(len(rec.idx)):
artist = rec.song_info[rec.idx[i]][0][0]
title = rec.song_info[rec.idx[i]][1][0]
print fmt.format(str(i+1), str(artist), str(title))
else:
print "Songnumber out of range, type list to get available songs"
except ValueError:
print "Command not found"
except IndexError:
print "Please input a command"