Skip to content

Latest commit

 

History

History
644 lines (355 loc) · 55.7 KB

detection_models.md

File metadata and controls

644 lines (355 loc) · 55.7 KB

52 个深度学习目标检测模型汇总

本文来源于毕业于韩国首尔国立大学电气与计算机工程专业的 Lee hoseong。项目地址是: https://github.com/hoya012/deep_learning_object_detection

目标检测作为计算机视觉中的一个重要分支,近些年来随着神经网络理论研究的深入和硬件 GPU 算力的大幅度提升,一举成为全球人工智能研究的热点,落地项目也最先开始。

纵观 2013 年到 2020 年,从最早的 R-CNN、OverFeat 到后来的 SSD、YOLO v3 再到去年的 M2Det,新模型层出不穷,性能也越来越好!本文将完整地总结 52 个目标检测模型极其性能对比,包括完备的文献 paper 列表。

v2-e0a477f5a1fb362f72123676ef403894_720w deep_learning_object_detection_history

该技术路线纵贯的时间线是 2013 年到 2020 年初,上图总结了这期间目标检测所有具有代表性的模型。图中标红的部分是相对来说比较重要,需要重点掌握的模型。

模型性能对比表

由于硬件不同(例如 CPU、GPU、RAM 等),来比较 FPS 往往不够准确。更合适的比较方法是在同一硬件配置下测量所有模型的性能。以上所有模型的性能对比结果如下:

Detector VOC07 (mAP@IoU=0.5) VOC12 (mAP@IoU=0.5) COCO (mAP@IoU=0.5:0.95) Published In
R-CNN 58.5 - - CVPR'14
SPP-Net 59.2 - - ECCV'14
MR-CNN 78.2 (07+12) 73.9 (07+12) - ICCV'15
Fast R-CNN 70.0 (07+12) 68.4 (07++12) 19.7 ICCV'15
Faster R-CNN 73.2 (07+12) 70.4 (07++12) 21.9 NIPS'15
YOLO v1 66.4 (07+12) 57.9 (07++12) - CVPR'16
G-CNN 66.8 66.4 (07+12) - CVPR'16
AZNet 70.4 - 22.3 CVPR'16
ION 80.1 77.9 33.1 CVPR'16
HyperNet 76.3 (07+12) 71.4 (07++12) - CVPR'16
OHEM 78.9 (07+12) 76.3 (07++12) 22.4 CVPR'16
MPN - - 33.2 BMVC'16
SSD 76.8 (07+12) 74.9 (07++12) 31.2 ECCV'16
GBDNet 77.2 (07+12) - 27.0 ECCV'16
CPF 76.4 (07+12) 72.6 (07++12) - ECCV'16
R-FCN 79.5 (07+12) 77.6 (07++12) 29.9 NIPS'16
DeepID-Net 69.0 - - PAMI'16
NoC 71.6 (07+12) 68.8 (07+12) 27.2 TPAMI'16
DSSD 81.5 (07+12) 80.0 (07++12) 33.2 arXiv'17
TDM - - 37.3 CVPR'17
FPN - - 36.2 CVPR'17
YOLO v2 78.6 (07+12) 73.4 (07++12) - CVPR'17
RON 77.6 (07+12) 75.4 (07++12) 27.4 CVPR'17
DeNet 77.1 (07+12) 73.9 (07++12) 33.8 ICCV'17
CoupleNet 82.7 (07+12) 80.4 (07++12) 34.4 ICCV'17
RetinaNet - - 39.1 ICCV'17
DSOD 77.7 (07+12) 76.3 (07++12) - ICCV'17
SMN 70.0 - - ICCV'17
Light-Head R-CNN - - 41.5 arXiv'17
YOLO v3 - - 33.0 arXiv'18
SIN 76.0 (07+12) 73.1 (07++12) 23.2 CVPR'18
STDN 80.9 (07+12) - - CVPR'18
RefineDet 83.8 (07+12) 83.5 (07++12) 41.8 CVPR'18
SNIP - - 45.7 CVPR'18
Relation-Network - - 32.5 CVPR'18
Cascade R-CNN - - 42.8 CVPR'18
MLKP 80.6 (07+12) 77.2 (07++12) 28.6 CVPR'18
Fitness-NMS - - 41.8 CVPR'18
RFBNet 82.2 (07+12) - - ECCV'18
CornerNet - - 42.1 ECCV'18
PFPNet 84.1 (07+12) 83.7 (07++12) 39.4 ECCV'18
Pelee 70.9 (07+12) - - NIPS'18
HKRM 78.8 (07+12) - 37.8 NIPS'18
M2Det - - 44.2 AAAI'19
R-DAD 81.2 (07++12) 82.0 (07++12) 43.1 AAAI'19
ScratchDet 84.1 (07++12) 83.6 (07++12) 39.1 CVPR'19
Libra R-CNN - - 43.0 CVPR'19
Reasoning-RCNN 82.5 (07++12) - 43.2 CVPR'19
FSAF - - 44.6 CVPR'19
AmoebaNet + NAS-FPN - - 47.0 CVPR'19
Cascade-RetinaNet - - 41.1 CVPR'19
HTC - - 47.2 CVPR'19
TridentNet - - 48.4 ICCV'19
DAFS 85.3 (07+12) 83.1 (07++12) 40.5 ICCV'19
Auto-FPN 81.8 (07++12) - 40.5 ICCV'19
FCOS - - 44.7 ICCV'19
FreeAnchor - - 44.8 NeurIPS'19
DetNAS 81.5 (07++12) - 42.0 NeurIPS'19
NATS - - 42.0 NeurIPS'19
AmoebaNet + NAS-FPN + AA - - 50.7 arXiv'19
SpineNet - - 52.1 arXiv'19
CBNet - - 53.3 AAAI'20
EfficientDet - - 52.6 CVPR'20
DetectoRS - - 54.7 arXiv'20

从上面的表格中,可以清楚看到不同模型在 VOC07、VOC12、COCO 数据集上的性能表现。同时列出了模型论文发表来源。

下面列举一些重点标红的模型进行简要介绍。

模型论文篇

2014

2015

2016

2017

2018

2019

  • [M2Det] M2Det: A Single-Shot Object Detector based on Multi-Level Feature Pyramid Network | [AAAI' 19] |[pdf] [official code - pytorch]

  • [R-DAD] Object Detection based on Region Decomposition and Assembly | [AAAI' 19] |[pdf]

  • [CAMOU] CAMOU: Learning Physical Vehicle Camouflages to Adversarially Attack Detectors in the Wild | [ICLR' 19] |[pdf]

  • Feature Intertwiner for Object Detection | [ICLR' 19] |[pdf]

  • [GIoU] Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression | [CVPR' 19] |[pdf]

  • Automatic adaptation of object detectors to new domains using self-training | [CVPR' 19] |[pdf]

  • [Libra R-CNN] Libra R-CNN: Balanced Learning for Object Detection | [CVPR' 19] |[pdf]

  • [FSAF] Feature Selective Anchor-Free Module for Single-Shot Object Detection | [CVPR' 19] |[pdf]

  • [ExtremeNet] Bottom-up Object Detection by Grouping Extreme and Center Points | [CVPR' 19] |[pdf] | [official code - pytorch]

  • [C-MIL] C-MIL: Continuation Multiple Instance Learning for Weakly Supervised Object Detection | [CVPR' 19] |[pdf] | [official code - torch]

  • [ScratchDet] ScratchDet: Training Single-Shot Object Detectors from Scratch | [CVPR' 19] |[pdf]

  • Bounding Box Regression with Uncertainty for Accurate Object Detection | [CVPR' 19] |[pdf] | [official code - caffe2]

  • Activity Driven Weakly Supervised Object Detection | [CVPR' 19] |[pdf]

  • Towards Accurate One-Stage Object Detection with AP-Loss | [CVPR' 19] |[pdf]

  • Strong-Weak Distribution Alignment for Adaptive Object Detection | [CVPR' 19] |[pdf] | [official code - pytorch]

  • [NAS-FPN] NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object Detection | [CVPR' 19] |[pdf]

  • [Adaptive NMS] Adaptive NMS: Refining Pedestrian Detection in a Crowd | [CVPR' 19] |[pdf]

  • Point in, Box out: Beyond Counting Persons in Crowds | [CVPR' 19] |[pdf]

  • Locating Objects Without Bounding Boxes | [CVPR' 19] |[pdf]

  • Sampling Techniques for Large-Scale Object Detection from Sparsely Annotated Objects | [CVPR' 19] |[pdf]

  • Towards Universal Object Detection by Domain Attention | [CVPR' 19] |[pdf]

  • Exploring the Bounds of the Utility of Context for Object Detection | [CVPR' 19] |[pdf]

  • What Object Should I Use? - Task Driven Object Detection | [CVPR' 19] |[pdf]

  • Dissimilarity Coefficient based Weakly Supervised Object Detection | [CVPR' 19] |[pdf]

  • Adapting Object Detectors via Selective Cross-Domain Alignment | [CVPR' 19] |[pdf]

  • Fully Quantized Network for Object Detection | [CVPR' 19] |[pdf]

  • Distilling Object Detectors with Fine-grained Feature Imitation | [CVPR' 19] |[pdf]

  • Multi-task Self-Supervised Object Detection via Recycling of Bounding Box Annotations | [CVPR' 19] |[pdf]

  • [Reasoning-RCNN] Reasoning-RCNN: Unifying Adaptive Global Reasoning into Large-scale Object Detection | [CVPR' 19] |[pdf]

  • Arbitrary Shape Scene Text Detection with Adaptive Text Region Representation | [CVPR' 19] |[pdf]

  • Assisted Excitation of Activations: A Learning Technique to Improve Object Detectors | [CVPR' 19] |[pdf]

  • Spatial-aware Graph Relation Network for Large-scale Object Detection | [CVPR' 19] |[pdf]

  • [MaxpoolNMS] MaxpoolNMS: Getting Rid of NMS Bottlenecks in Two-Stage Object Detectors | [CVPR' 19] |[pdf]

  • You reap what you sow: Generating High Precision Object Proposals for Weakly-supervised Object Detection | [CVPR' 19] |[pdf]

  • Object detection with location-aware deformable convolution and backward attention filtering | [CVPR' 19] |[pdf]

  • Diversify and Match: A Domain Adaptive Representation Learning Paradigm for Object Detection | [CVPR' 19] |[pdf]

  • Hybrid Task Cascade for Instance Segmentation | [CVPR' 19] |[pdf]

  • [GFR] Improving Object Detection from Scratch via Gated Feature Reuse | [BMVC' 19] |[pdf] | [official code - pytorch]

  • [Cascade RetinaNet] Cascade RetinaNet: Maintaining Consistency for Single-Stage Object Detection | [BMVC' 19] |[pdf]

  • Soft Sampling for Robust Object Detection | [BMVC' 19] |[pdf]

  • Multi-adversarial Faster-RCNN for Unrestricted Object Detection | [ICCV' 19] |[pdf]

  • Towards Adversarially Robust Object Detection | [ICCV' 19] |[pdf]

  • A Robust Learning Approach to Domain Adaptive Object Detection | [ICCV' 19] |[pdf]

  • A Delay Metric for Video Object Detection: What Average Precision Fails to Tell | [ICCV' 19] |[pdf]

  • Delving Into Robust Object Detection From Unmanned Aerial Vehicles: A Deep Nuisance Disentanglement Approach | [ICCV' 19] |[pdf]

  • Employing Deep Part-Object Relationships for Salient Object Detection | [ICCV' 19] |[pdf]

  • Learning Rich Features at High-Speed for Single-Shot Object Detection | [ICCV' 19] |[pdf]

  • Structured Modeling of Joint Deep Feature and Prediction Refinement for Salient Object Detection | [ICCV' 19] |[pdf]

  • Selectivity or Invariance: Boundary-Aware Salient Object Detection | [ICCV' 19] |[pdf]

  • Progressive Sparse Local Attention for Video Object Detection | [ICCV' 19] |[pdf]

  • Minimum Delay Object Detection From Video | [ICCV' 19] |[pdf]

  • Towards Interpretable Object Detection by Unfolding Latent Structures | [ICCV' 19] |[pdf]

  • Scaling Object Detection by Transferring Classification Weights | [ICCV' 19] |[pdf]

  • [TridentNet] Scale-Aware Trident Networks for Object Detection | [ICCV' 19] |[pdf]

  • Generative Modeling for Small-Data Object Detection | [ICCV' 19] |[pdf]

  • Transductive Learning for Zero-Shot Object Detection | [ICCV' 19] |[pdf]

  • Self-Training and Adversarial Background Regularization for Unsupervised Domain Adaptive One-Stage Object Detection | [ICCV' 19] |[pdf]

  • [CenterNet] CenterNet: Keypoint Triplets for Object Detection | [ICCV' 19] |[pdf]

  • [DAFS] Dynamic Anchor Feature Selection for Single-Shot Object Detection | [ICCV' 19] |[pdf]

  • [Auto-FPN] Auto-FPN: Automatic Network Architecture Adaptation for Object Detection Beyond Classification | [ICCV' 19] |[pdf]

  • Multi-Adversarial Faster-RCNN for Unrestricted Object Detection | [ICCV' 19] |[pdf]

  • Object Guided External Memory Network for Video Object Detection | [ICCV' 19] |[pdf]

  • [ThunderNet] ThunderNet: Towards Real-Time Generic Object Detection on Mobile Devices | [ICCV' 19] |[pdf]

  • [RDN] Relation Distillation Networks for Video Object Detection | [ICCV' 19] |[pdf]

  • [MMNet] Fast Object Detection in Compressed Video | [ICCV' 19] |[pdf]

  • Towards High-Resolution Salient Object Detection | [ICCV' 19] |[pdf]

  • [SCAN] Stacked Cross Refinement Network for Edge-Aware Salient Object Detection | [ICCV' 19] |[official code] |[pdf]

  • Motion Guided Attention for Video Salient Object Detection | [ICCV' 19] |[pdf]

  • Semi-Supervised Video Salient Object Detection Using Pseudo-Labels | [ICCV' 19] |[pdf]

  • Learning to Rank Proposals for Object Detection | [ICCV' 19] |[pdf]

  • [WSOD2] WSOD2: Learning Bottom-Up and Top-Down Objectness Distillation for Weakly-Supervised Object Detection | [ICCV' 19] |[pdf]

  • [ClusDet] Clustered Object Detection in Aerial Images | [ICCV' 19] |[pdf]

  • Towards Precise End-to-End Weakly Supervised Object Detection Network | [ICCV' 19] |[pdf]

  • Few-Shot Object Detection via Feature Reweighting | [ICCV' 19] |[pdf]

  • [Objects365] Objects365: A Large-Scale, High-Quality Dataset for Object Detection | [ICCV' 19] |[pdf]

  • [EGNet] EGNet: Edge Guidance Network for Salient Object Detection | [ICCV' 19] |[pdf]

  • Optimizing the F-Measure for Threshold-Free Salient Object Detection | [ICCV' 19] |[pdf]

  • Sequence Level Semantics Aggregation for Video Object Detection | [ICCV' 19] |[pdf]

  • [NOTE-RCNN] NOTE-RCNN: NOise Tolerant Ensemble RCNN for Semi-Supervised Object Detection | [ICCV' 19] |[pdf]

  • Enriched Feature Guided Refinement Network for Object Detection | [ICCV' 19] |[pdf]

  • [POD] POD: Practical Object Detection With Scale-Sensitive Network | [ICCV' 19] |[pdf]

  • [FCOS] FCOS: Fully Convolutional One-Stage Object Detection | [ICCV' 19] |[pdf]

  • [RepPoints] RepPoints: Point Set Representation for Object Detection | [ICCV' 19] |[pdf]

  • Better to Follow, Follow to Be Better: Towards Precise Supervision of Feature Super-Resolution for Small Object Detection | [ICCV' 19] |[pdf]

  • Weakly Supervised Object Detection With Segmentation Collaboration | [ICCV' 19] |[pdf]

  • Leveraging Long-Range Temporal Relationships Between Proposals for Video Object Detection | [ICCV' 19] |[pdf]

  • Detecting 11K Classes: Large Scale Object Detection Without Fine-Grained Bounding Boxes | [ICCV' 19] |[pdf]

  • [C-MIDN] C-MIDN: Coupled Multiple Instance Detection Network With Segmentation Guidance for Weakly Supervised Object Detection | [ICCV' 19] |[pdf]

  • Meta-Learning to Detect Rare Objects | [ICCV' 19] |[pdf]

  • [Cap2Det] Cap2Det: Learning to Amplify Weak Caption Supervision for Object Detection | [ICCV' 19] |[pdf]

  • [Gaussian YOLOv3] Gaussian YOLOv3: An Accurate and Fast Object Detector using Localization Uncertainty for Autonomous Driving | [ICCV' 19] |[pdf] [official code - c]

  • [FreeAnchor] FreeAnchor: Learning to Match Anchors for Visual Object Detection | [NeurIPS' 19] |[pdf]

  • Memory-oriented Decoder for Light Field Salient Object Detection | [NeurIPS' 19] |[pdf]

  • One-Shot Object Detection with Co-Attention and Co-Excitation | [NeurIPS' 19] |[pdf]

  • [DetNAS] DetNAS: Backbone Search for Object Detection | [NeurIPS' 19] |[pdf]

  • Consistency-based Semi-supervised Learning for Object detection | [NeurIPS' 19] |[pdf]

  • [NATS] Efficient Neural Architecture Transformation Searchin Channel-Level for Object Detection | [NeurIPS' 19] |[pdf]

  • [AA] Learning Data Augmentation Strategies for Object Detection | [arXiv' 19] |[pdf]

  • [Spinenet] Spinenet: Learning scale-permuted backbone for recognition and localization | [arXiv' 19] |[pdf]

  • Object Detection in 20 Years: A Survey | [arXiv' 19] |[pdf]

2020

  • [Spiking-YOLO] Spiking-YOLO: Spiking Neural Network for Real-time Object Detection | [AAAI' 20] |[pdf]

  • Tell Me What They're Holding: Weakly-supervised Object Detection with Transferable Knowledge from Human-object Interaction | [AAAI' 20] |[pdf]

  • [CBnet] Cbnet: A novel composite backbone network architecture for object detection | [AAAI' 20] |[pdf]

  • [Distance-IoU Loss] Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression | [AAAI' 20] |[pdf]

  • Computation Reallocation for Object Detection | [ICLR' 20] |[pdf]

  • [YOLOv4] YOLOv4: Optimal Speed and Accuracy of Object Detection | [arXiv' 20] |[pdf]

  • Few-Shot Object Detection With Attention-RPN and Multi-Relation Detector | [CVPR' 20] |[pdf]

  • Large-Scale Object Detection in the Wild From Imbalanced Multi-Labels | [CVPR' 20] |[pdf]

  • Bridging the Gap Between Anchor-Based and Anchor-Free Detection via Adaptive Training Sample Selection | [CVPR' 20] |[pdf]

  • Rethinking Classification and Localization for Object Detection | [CVPR' 20] |[pdf]

  • Multiple Anchor Learning for Visual Object Detection | [CVPR' 20] |[pdf]

  • [CentripetalNet] CentripetalNet: Pursuing High-Quality Keypoint Pairs for Object Detection | [CVPR' 20] |[pdf]

  • Learning From Noisy Anchors for One-Stage Object Detection | [CVPR' 20] |[pdf]

  • [EfficientDet] EfficientDet: Scalable and Efficient Object Detection | [CVPR' 20] |[pdf]

  • Overcoming Classifier Imbalance for Long-Tail Object Detection With Balanced Group Softmax | [CVPR' 20] |[pdf]

  • Dynamic Refinement Network for Oriented and Densely Packed Object Detection | [CVPR' 20] |[pdf]

  • Noise-Aware Fully Webly Supervised Object Detection | [CVPR' 20] |[pdf]

  • [Hit-Detector] Hit-Detector: Hierarchical Trinity Architecture Search for Object Detection | [CVPR' 20] |[pdf]

  • [D2Det] D2Det: Towards High Quality Object Detection and Instance Segmentation | [CVPR' 20] |[pdf]

  • Prime Sample Attention in Object Detection | [CVPR' 20] |[pdf]

  • Don’t Even Look Once: Synthesizing Features for Zero-Shot Detection | [CVPR' 20] |[pdf]

  • Exploring Categorical Regularization for Domain Adaptive Object Detection | [CVPR' 20] |[pdf]

  • [SP-NAS] SP-NAS: Serial-to-Parallel Backbone Search for Object Detection | [CVPR' 20] |[pdf]

  • [NAS-FCOS] NAS-FCOS: Fast Neural Architecture Search for Object Detection | [CVPR' 20] |[pdf]

  • [DR Loss] DR Loss: Improving Object Detection by Distributional Ranking | [CVPR' 20] |[pdf]

  • Detection in Crowded Scenes: One Proposal, Multiple Predictions | [CVPR' 20] |[pdf]

  • [AugFPN] AugFPN: Improving Multi-Scale Feature Learning for Object Detection | [CVPR' 20] |[pdf]

  • Robust Object Detection Under Occlusion With Context-Aware CompositionalNets | [CVPR' 20] |[pdf]

  • Cross-Domain Document Object Detection: Benchmark Suite and Method | [CVPR' 20] |[pdf]

  • Exploring Bottom-Up and Top-Down Cues With Attentive Learning for Webly Supervised Object Detection | [CVPR' 20] |[pdf]

  • [SLV] SLV: Spatial Likelihood Voting for Weakly Supervised Object Detection | [CVPR' 20] |[pdf]

  • [HAMBox] HAMBox: Delving Into Mining High-Quality Anchors on Face Detection | [CVPR' 20] |[pdf]

  • [Context R-CNN] Context R-CNN: Long Term Temporal Context for Per-Camera Object Detection | [CVPR' 20] |[pdf]

  • Mixture Dense Regression for Object Detection and Human Pose Estimation | [CVPR' 20] |[pdf]

  • Offset Bin Classification Network for Accurate Object Detection | [CVPR' 20] |[pdf]

  • [NETNet] NETNet: Neighbor Erasing and Transferring Network for Better Single Shot Object Detection | [CVPR' 20] |[pdf]

  • Scale-Equalizing Pyramid Convolution for Object Detection | [CVPR' 20] |[pdf]

  • Temporal-Context Enhanced Detection of Heavily Occluded Pedestrians | [CVPR' 20] |[pdf]

  • [MnasFPN] MnasFPN: Learning Latency-Aware Pyramid Architecture for Object Detection on Mobile Devices | [CVPR' 20] |[pdf]

  • Physically Realizable Adversarial Examples for LiDAR Object Detection | [CVPR' 20] |[pdf]

  • Cross-domain Object Detection through Coarse-to-Fine Feature Adaptation | [CVPR' 20] |[pdf]

  • Incremental Few-Shot Object Detection | [CVPR' 20] |[pdf]

  • Where, What, Whether: Multi-Modal Learning Meets Pedestrian Detection | [CVPR' 20] |[pdf]

  • Cylindrical Convolutional Networks for Joint Object Detection and Viewpoint Estimation | [CVPR' 20] |[pdf]

  • Learning a Unified Sample Weighting Network for Object Detection | [CVPR' 20] |[pdf]

  • Seeing without Looking: Contextual Rescoring of Object Detections for AP Maximization | [CVPR' 20] |[pdf]

  • DetectoRS: Detecting Objects with Recursive Feature Pyramid and Switchable Atrous Convolution | [arXiv' 20] |[pdf]

  • [DETR] End-to-End Object Detection with Transformers | [ECCV' 20] |[pdf]

  • Suppress and Balance: A Simple Gated Network for Salient Object Detection | [ECCV' 20] |[code]

  • [BorderDet] BorderDet: Border Feature for Dense Object Detection | [ECCV' 20] |[pdf]

  • Corner Proposal Network for Anchor-free, Two-stage Object Detection | [ECCV' 20] |[pdf]

  • A General Toolbox for Understanding Errors in Object Detection | [ECCV' 20] |[pdf]

  • [Chained-Tracker] Chained-Tracker: Chaining Paired Attentive Regression Results for End-to-End Joint Multiple-Object Detection and Tracking | [ECCV' 20] |[pdf]

  • Side-Aware Boundary Localization for More Precise Object Detection | [ECCV' 20] |[pdf]

  • [PIoU] PIoU Loss: Towards Accurate Oriented Object Detection in Complex Environments | [ECCV' 20] |[pdf]

  • [AABO] AABO: Adaptive Anchor Box Optimization for Object Detection via Bayesian Sub-sampling | [ECCV' 20] |[pdf]

  • Highly Efficient Salient Object Detection with 100K Parameters | [ECCV' 20] |[pdf]

  • [GeoGraph] GeoGraph: Learning graph-based multi-view object detection with geometric cues end-to-end | [ECCV' 20] |[pdf]

  • Many-shot from Low-shot: Learning to Annotate using Mixed Supervision for Object Detection| [ECCV' 20] |[pdf]

  • Cheaper Pre-training Lunch: An Efficient Paradigm for Object Detection | [ECCV' 20] |[pdf]

  • Arbitrary-Oriented Object Detection with Circular Smooth Label | [ECCV' 20] |[pdf]

  • Soft Anchor-Point Object Detection | [ECCV' 20] |[pdf]

  • Object Detection with a Unified Label Space from Multiple Datasets | [ECCV' 20] |[pdf]

  • [MimicDet] MimicDet: Bridging the Gap Between One-Stage and Two-Stage Object Detection | [ECCV' 20] |[pdf]

  • Prior-based Domain Adaptive Object Detection for Hazy and Rainy Conditions | [ECCV' 20] |[pdf]

  • [Dynamic R-CNN] Dynamic R-CNN: Towards High Quality Object Detection via Dynamic Training | [ECCV' 20] |[pdf]

  • [OS2D] OS2D: One-Stage One-Shot Object Detection by Matching Anchor Features | [ECCV' 20] |[pdf]

  • Multi-Scale Positive Sample Refinement for Few-Shot Object Detection | [ECCV' 20] |[pdf]

  • Few-Shot Object Detection and Viewpoint Estimation for Objects in the Wild | [ECCV' 20] |[pdf]

  • Collaborative Training between Region Proposal Localization and Classification for Domain Adaptive Object Detection | [ECCV' 20] |[pdf]

  • Two-Stream Active Query Suggestion for Large-Scale Object Detection in Connectomics | [ECCV' 20] |[pdf]

  • [FDTS] FDTS: Fast Diverse-Transformation Search for Object Detection and Beyond | [ECCV' 20]

  • Dual refinement underwater object detection network | [ECCV' 20] |[pdf]

  • [APRICOT] APRICOT: A Dataset of Physical Adversarial Attacks on Object Detection | [ECCV' 20] |[pdf]

  • Large Batch Optimization for Object Detection: Training COCO in 12 Minutes | [ECCV' 20] |[pdf]

  • Hierarchical Context Embedding for Region-based Object Detection | [ECCV' 20] |[pdf]

  • Pillar-based Object Detection for Autonomous Driving | [ECCV' 20] |[pdf]

  • Dive Deeper Into Box for Object Detection | [ECCV' 20] |[pdf]

  • Domain Adaptive Object Detection via Asymmetric Tri-way Faster-RCNN | [ECCV' 20] |[pdf]

  • Probabilistic Anchor Assignment with IoU Prediction for Object Detection | [ECCV' 20] |[pdf]

  • [HoughNet] HoughNet: Integrating near and long-range evidence for bottom-up object detection | [ECCV' 20] |[pdf]

  • [LabelEnc] LabelEnc: A New Intermediate Supervision Method for Object Detection | [ECCV' 20] |[pdf]

  • Boosting Weakly Supervised Object Detection with Progressive Knowledge Transfer | [ECCV' 20] |[pdf]

  • On the Importance of Data Augmentation for Object Detection | [ECCV' 20] |[pdf]

  • Adaptive Object Detection with Dual Multi-Label Prediction | [ECCV' 20] |[pdf]

  • Quantum-soft QUBO Suppression for Accurate Object Detection | [ECCV' 20] |[pdf]

  • Improving Object Detection with Selective Self-supervised Self-training | [ECCV' 20] |[pdf]

数据集论文篇

同时也列出了以上模型通常使用的公开数据集:VOC、ILSVRC、COCO,如下表所示:

用于目标检测的数据集相关论文如下:

  • [PASCAL VOC] The PASCAL Visual Object Classes (VOC) Challenge | [IJCV' 10] | [pdf]

  • [PASCAL VOC] The PASCAL Visual Object Classes Challenge: A Retrospective | [IJCV' 15] | [pdf] | [link]

  • [ImageNet] ImageNet: A Large-Scale Hierarchical Image Database| [CVPR' 09] | [pdf]

  • [ImageNet] ImageNet Large Scale Visual Recognition Challenge | [IJCV' 15] | [pdf] | [link]

  • [COCO] Microsoft COCO: Common Objects in Context | [ECCV' 14] | [pdf] | [link]

  • [Open Images] The Open Images Dataset V4: Unified image classification, object detection, and visual relationship detection at scale | [arXiv' 18] | [pdf] | [link]

  • [DOTA] DOTA: A Large-scale Dataset for Object Detection in Aerial Images | [CVPR' 18] | [pdf] | [link]

  • [Objects365] Objects365: A Large-Scale, High-Quality Dataset for Object Detection | [ICCV' 19] | [link]

参考

  1. 52 个深度学习目标检测模型汇总,论文、源码一应俱全!
  2. https://github.com/hoya012/deep_learning_object_detection