-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbaseline.py
251 lines (191 loc) · 9.86 KB
/
baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
#!/usr/bin/env python3
"""Usage: baseline.py ACTION BASE FILE [options]
Finetune BERT on creole data
Options:
-P, --path-to-model The path to the directory containing your pytorch_model.bin
TODO:
-C, --checkpoint FILE Continue from this checkpoint .torch file.
-d, --device DEVICE Run on this device. [default: cpu]
--no-checkpoint Disable saving of intermediate checkpoints.
--no-save Disable model & checkpoint saving.
Example:
python baseline.py train en pidgin_corpus.txt --debug
python baseline.py evaluate en other_corpus.txt -P ./naija-1/pytorch_model.bin
python baseline.py train fr SMS-train-raw.ht --debug
"""
import logging
import logzero
import argparse
import time
import random
import numpy as np
from pathlib import Path
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer
from transformers import Trainer, TrainingArguments
from transformers import AutoModelForMaskedLM, AutoConfig
from transformers import AdamW, get_linear_schedule_with_warmup
from transformers.data.data_collator import DataCollatorForLanguageModeling
from transformers import pipeline
from utils import format_time
from datasets import CreoleJsonDataset, CreoleDataset, NaijaUDDataset, SinglishSMSDataset
def parse_args():
parser = argparse.ArgumentParser()
# Data
parser.add_argument("--file_path", type=str, default="",
help="Path to the data you are trying to finetune on or evaluate from")
parser.add_argument("--creole", type=str, default="", choices=["singlish", "haitian", "naija"])
parser.add_argument("--creole_only", type=bool, default=False, choices=[True, False])
# Model
parser.add_argument("--tokenizer", type=str, default='bert-base-uncased',
help="Pretrained BERT: bert-base-uncased, bert-base-multilingual-cased, xlm-roberta-base, etc.")
parser.add_argument("--from_pretrained", type=str, default='bert-base-uncased',
help="Pretrained BERT: bert-base-uncased, bert-base-multilingual-cased, xlm-roberta-base, etc.,"
"Or full path to our pretrained model.")
parser.add_argument("--base_lang", type=str, default="en",
help="Base language of the Creole")
# Logging
parser.add_argument("--output_dir", type=str, default="")
parser.add_argument("--checkpoint_dir", type=str, default="")
parser.add_argument("--debug", default=False, action="store_true",
help="Enable debug-level logging.")
# Training
parser.add_argument("--action", type=str, default="train", choices=["train", "evaluate"])
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--batch_size", type=int, default=8)
parser.add_argument("--num_epochs", type=int, default=100)
parser.add_argument("--learning_rate", type=float, default=2e-5,
help="Former default was 5e-5")
parser.add_argument("--adam_epsilon", type=float, default=1e-8)
parser.add_argument("--num_warmup_steps", type=int, default=0,
help="Default in run_glue.py")
# Evaluation
parser.add_argument("--eval_batch_size", type=int, default=1)
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
# log.debug(args)
log_level = logging.DEBUG if args.debug else logging.INFO
logzero.loglevel(log_level)
logzero.formatter(logzero.LogFormatter(datefmt="%Y-%m-%d %H:%M:%S"))
# load BERT tokenizer
print('Loading BERT tokenizer...')
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer, do_lower_case=('uncased' in args.from_pretrained))
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
# If there's a GPU available...
if torch.cuda.is_available():
device = torch.device("cuda")
print('There are %d GPU(s) available.' % torch.cuda.device_count())
print('We will use the GPU:', torch.cuda.get_device_name(0))
# If not...
else:
print('No GPU available, using the CPU instead.')
device = torch.device("cpu")
if args.action == "train":
if args.creole == "singlish":
train_dataset = CreoleJsonDataset(src_file=args.file_path, tokenizer=tokenizer, base_language="en", creole_only=args.creole_only)
elif args.creole == "naija":
train_dataset = CreoleJsonDataset(src_file=args.file_path, tokenizer=tokenizer, base_language="en", creole_only=args.creole_only)
elif args.creole == "haitian":
train_dataset = CreoleJsonDataset(src_file=args.file_path, tokenizer=tokenizer, base_language="fr", creole_only=args.creole_only)
else:
print(f"please specify the argument --creole= from ['singlish', 'haitian', 'naija']")
print(f"other creoles have not been implemented")
raise NotImplementedError
"""
CREOLE-ONLY daataset
if args.creole == "singlish":
train_dataset = SinglishSMSDataset(src_file=args.file_path, tokenizer=tokenizer, base_language="en")
elif args.creole == "naija":
train_dataset = CreoleDataset(src_file=args.file_path, tokenizer=tokenizer, base_language="en")
elif args.creole == "haitian":
train_dataset = CreoleDataset(src_file=args.file_path, tokenizer=tokenizer, base_language="fr")
else:
print(f"please specify the argument --creole= from ['singlish', 'haitian', 'naija']")
print(f"other creoles have not been implemented")
raise NotImplementedError
"""
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=True, mlm_probability=0.15)
training_args = TrainingArguments(
output_dir=args.output_dir,
overwrite_output_dir=True,
num_train_epochs=args.num_epochs,
per_gpu_train_batch_size=args.batch_size,
save_steps=20_000,
save_total_limit=2,
prediction_loss_only=True,
)
model = AutoModelForMaskedLM.from_pretrained(args.from_pretrained)
model.to(device)
trainer = Trainer(
model=model,
args=training_args,
data_collator=data_collator,
train_dataset=train_dataset,
)
train_loader = trainer.get_train_dataloader() # has "input_ids" and "labels"
optimizer = AdamW(model.parameters(), lr=args.learning_rate, eps=args.adam_epsilon, weight_decay=0.01)
print(f"OPTIMIZER: {optimizer}")
total_steps = 100000 #len(train_loader) * args.num_epochs
# Create the learning rate scheduler.
scheduler = get_linear_schedule_with_warmup(optimizer,
num_warmup_steps=args.num_warmup_steps,
num_training_steps=total_steps)
dirLUT = {'bert-base-uncased': 'bert', 'bert-base-multilingual-cased': 'mbert', 'xlm-roberta-base': 'xlmr',
'prajjwal1/bert-tiny': 'tinybert', 'prajjwal1/bert-small': 'smallbert'}
steps_so_far = 0
for epoch_i in range(0, args.num_epochs):
print("")
print('======== Epoch {:} / {:} ========'.format(epoch_i + 1, args.num_epochs))
print('Training...')
t0 = time.time()
total_train_loss = 0
model.train()
for step, batch in enumerate(train_loader):
if step % 100 == 0 and not step == 0:
# Calculate elapsed time in minutes.
elapsed = format_time(time.time() - t0)
# Report progress.
print(' Batch {:>5,} of {:>5,}. Elapsed: {:}.'.format(step, len(train_loader), elapsed))
b_input_ids = batch["input_ids"].to(device)
b_labels = batch["labels"].to(device)
model.zero_grad()
result = model(b_input_ids, token_type_ids=None, labels=b_labels, return_dict=True)
loss = result.loss
logits = result.logits
total_train_loss += loss.item()
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
scheduler.step()
steps_so_far += 1
if steps_so_far % 20000 == 0 and not steps_so_far == 0:
print(f"Saving model @ epoch {epoch_i} || total steps {steps_so_far}")
path_to_checkpoint = f"{args.checkpoint_dir}/{dirLUT[args.tokenizer]}/{args.creole}/{steps_so_far}"
Path(path_to_checkpoint).mkdir(parents=True, exist_ok=True)
trainer.save_model(path_to_checkpoint)
if steps_so_far == 100000:
print(f"Saving model @ epoch {epoch_i} || total steps {steps_so_far} || END")
path_to_checkpoint = f"{args.checkpoint_dir}/{dirLUT[args.tokenizer]}/{args.creole}/{steps_so_far}"
Path(path_to_checkpoint).mkdir(parents=True, exist_ok=True)
trainer.save_model(path_to_checkpoint)
print("Saved Model. EXITING TRAINING ...")
exit(100000)
avg_train_loss = total_train_loss / len(train_loader)
training_time = format_time(time.time() - t0)
print(f"Done training! ")
"""
Useful links:
https://huggingface.co/transformers/model_doc/bert.html#bertformaskedlm
https://huggingface.co/blog/how-to-train
Useful tutorials:
https://colab.research.google.com/drive/1pTuQhug6Dhl9XalKB0zUGf4FIdYFlpcX#scrollTo=6J-FYdx6nFE_
Check that it actually trained:
https://colab.research.google.com/github/huggingface/blog/blob/master/notebooks/01_how_to_train.ipynb#scrollTo=YpvnFFmZJD-N
Perplexity:
https://huggingface.co/transformers/perplexity.html
"""