-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmake_datasets.py
286 lines (228 loc) · 10.3 KB
/
make_datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import json
import spacy
import re
import os
import random
import csv
import torch
from transformers import AutoTokenizer
from datasets import CreoleDataset, SinglishSMSDataset
def split_sents(base_language, text_lines):
"""
:param base_language: "en" or "fr" for English or French
:param text_lines: list['sentences', 'sentences']
:return: list['sent', 'sent', 'sent']
"""
sentences = []
if base_language == "en":
nlp = spacy.load("en_core_web_sm") #spacy.load("en_cor_web_sm")
for text in text_lines:
doc = nlp(text.strip())
[sentences.append(s.text) for s in doc.sents]
#TODO: still relevant for new Haitian dataset?
#
# elif base_language == "fr":
# for text in text_lines:
# [sentences.append(s.strip()) for s in re.split("\s\.\s", text)]
# #for s in re.split("\s\.\s", text):
# # clean_s = clean_sent(s)
# sentences = [s for s in sentences if s.strip() != ""]
else:
nlp = spacy.load("xx_sent_ud_sm")
for text in text_lines:
text = text.strip()
text = text.replace('\n', '')
doc = nlp(text)
[sentences.append(s.text) for s in doc.sents]
return sentences
def load_other(file):
path_to_other = "/Users/plq360/Desktop/data/creoledata/train/other"
full_path = os.path.join(path_to_other, file)
if file.endswith("json"):
with open(full_path, "r") as injson:
base_language = "ms"
data = json.load(injson) #data[i]["text"] to get the text, and check that "language" = 'malay'
malay_data = [d["text"] for d in data if d["language"] == "malay"]
return malay_data, base_language
else:
with open(full_path, "r") as infile:
base_language = file[-2:]
data = infile.readlines()
return data, base_language
def make_singlish(tokenizer):
new_train = []
new_dev = []
new_dataset = []
#load creole dataset
#Use the right Dataset object
path_to_singlish = "/Users/plq360/Desktop/data/creoledata/train/singlish"
src_file ="smsCorpus_en_2015.03.09_all.json"
full_src_path = os.path.join(path_to_singlish, src_file)
dataset = SinglishSMSDataset(src_file=full_src_path, tokenizer=tokenizer, base_language="en")
sentences = dataset.sentences
for sent in sentences[:100]:
print(sent)
print("#############################################")
#clean out some trash
for i, s in enumerate(sentences):
if "\n" not in s:
new_dataset.append({s: "singlish"})
random.shuffle(new_dataset)
num_datapoints = len(new_dataset)
num_train = int(num_datapoints * .95)
num_dev = num_datapoints - num_train
print(f"[SINGLISH]: Num total: {num_datapoints} ||| Num train: {num_train} ||| num_dev {num_dev}")
#assign parts of new_dataset to train or dev
[new_train.append(s) for s in new_dataset[:num_train]]
[new_dev.append(s) for s in new_dataset[num_train:]]
print(f"CONFIRM SINGLISH-ONLY SPLIT: len new_train: {len(new_train)} ||| len new_dev: {len(new_dev)}")
#load other datasets
other_datasets = ["news.en", "news.zh", "news.ta", "news-30k-ms.json"]
for file in other_datasets:
data, base_language = load_other(file)
other_sents = split_sents(base_language, data)
random.shuffle(other_sents)
print(f"Len {base_language} sents: {len(other_sents)}")
if len(other_sents) > num_datapoints:
other_train = [{s: base_language} for s in other_sents[:num_train]]
other_dev = [{s: base_language} for s in other_sents[num_train:num_train+num_dev]]
print(f"{base_language}: train({len(other_train)}) ||| dev({len(other_dev)})")
[new_train.append(s) for s in other_train]
[new_dev.append(s) for s in other_dev]
else: #split 95-5
sub_train = len(other_sents) * .95
other_train = [{s: base_language} for s in other_sents[:sub_train]]
other_dev = [{s: base_language} for s in other_sents[sub_train:]]
print(f"{base_language}: train({len(other_train)}) ||| dev({len(other_dev)})")
[new_train.append(s) for s in other_train]
[new_dev.append(s) for s in other_dev]
#confirm numbers of stuff:
print(f"LEN NEW TRAIN: {len(new_train)} ||| LEN NEW DEV {len(new_dev)}")
print(f"Outputs... ")
random.shuffle(new_train)
random.shuffle(new_dev)
#Print new TRAIN
new_file = os.path.join(path_to_singlish, "singlish_and_all.train.json")
with open(new_file, 'w', encoding="utf-8") as o:
json.dump(new_train, o, indent=0)
#Print new DEV
new_file = os.path.join(path_to_singlish, "singlish_and_all.dev.json")
with open(new_file, 'w', encoding="utf-8") as o:
json.dump(new_dev, o, indent=0)
def make_haitian():
new_train = []
new_dev = []
#load haitian train and dev
path_to_haitian = "/Users/plq360/Desktop/data/creoledata/train/haitian"
train_path = "disaster_response_messages_training.csv"
with open(os.path.join(path_to_haitian, train_path), "r") as csvfile:
rows = csv.reader(csvfile, delimiter=",", quotechar='"')
for r in rows:
h = r[3]
if h!= '':
new_train.append({h:"haitian"})
dev_path = "disaster_response_messages_validation.csv"
with open(os.path.join(path_to_haitian, dev_path), "r") as csvfile:
rows = csv.reader(csvfile, delimiter=",", quotechar='"')
for r in rows:
h = r[3]
if h!= '':
new_dev.append({h:"haitian"})
num_train = len(new_train)
num_dev = len(new_dev)
print(f"num train: {num_train}")
print(f"num_dev: {num_dev}")
#load other datasets
other_datasets = ["news.fr", "news.yo", "news.es"]
for file in other_datasets:
data, base_language = load_other(file)
other_sents = split_sents(base_language, data)
random.shuffle(other_sents)
print(f"Len {base_language} sents: {len(other_sents)}")
if len(other_sents) > num_train:
other_train = [{s: base_language} for s in other_sents[:num_train]]
other_dev = [{s: base_language} for s in other_sents[num_train:num_train + num_dev]]
print(f"{base_language}: train({len(other_train)}) ||| dev({len(other_dev)})")
[new_train.append(s) for s in other_train]
[new_dev.append(s) for s in other_dev]
else: # split 95-5
sub_train = int(len(other_sents) * .95)
other_train = [{s: base_language} for s in other_sents[:sub_train]]
other_dev = [{s: base_language} for s in other_sents[sub_train:]]
print(f"{base_language}: train({len(other_train)}) ||| dev({len(other_dev)})")
[new_train.append(s) for s in other_train]
[new_dev.append(s) for s in other_dev]
# confirm numbers of stuff:
print(f"LEN NEW TRAIN: {len(new_train)} ||| LEN NEW DEV {len(new_dev)}")
print(f"Outputs... ")
random.shuffle(new_train)
random.shuffle(new_dev)
# Print new TRAIN
new_file = os.path.join(path_to_haitian, "haitian_and_all.train.json")
with open(new_file, 'w', encoding="utf-8") as o:
json.dump(new_train, o, indent=0)
# Print new DEV
new_file = os.path.join(path_to_haitian, "haitian_and_all.dev.json")
with open(new_file, 'w', encoding="utf-8") as o:
json.dump(new_dev, o, indent=0)
pass
def make_naija(tokenizer):
new_train = []
new_dev = []
path_to_naija = "/Users/plq360/Desktop/data/creoledata/train/naija"
src_file ="pidgin_corpus.txt"
full_src_path = os.path.join(path_to_naija, src_file)
#load creole dataset
dataset = CreoleDataset(src_file=full_src_path, tokenizer=tokenizer, base_language="en")
sentences = dataset.sentences
#load other datasets
random.shuffle(sentences)
num_datapoints = len(sentences)
num_train = int(num_datapoints * .95)
num_dev = num_datapoints - num_train
print(f"[NAIJA]: Num total: {num_datapoints} ||| Num train: {num_train} ||| num_dev {num_dev}")
# assign parts of new_dataset to train or dev
[new_train.append({s: "naija"}) for s in sentences[:num_train]]
[new_dev.append({s: "naija"}) for s in sentences[num_train:]]
print(f"CONFIRM NAIJA-ONLY SPLIT: len new_train: {len(new_train)} ||| len new_dev: {len(new_dev)}")
# load other datasets
other_datasets = ["news.en", "news.yo", "news.pt"]
for file in other_datasets:
data, base_language = load_other(file)
other_sents = split_sents(base_language, data)
random.shuffle(other_sents)
print(f"Len {base_language} sents: {len(other_sents)}")
if len(other_sents) > num_datapoints:
other_train = [{s: base_language} for s in other_sents[:num_train]]
other_dev = [{s: base_language} for s in other_sents[num_train:num_train + num_dev]]
print(f"{base_language}: train({len(other_train)}) ||| dev({len(other_dev)})")
[new_train.append(s) for s in other_train]
[new_dev.append(s) for s in other_dev]
else: # split 95-5
sub_train = int(len(other_sents) * .95)
other_train = [{s: base_language} for s in other_sents[:sub_train]]
other_dev = [{s: base_language} for s in other_sents[sub_train:]]
print(f"{base_language}: train({len(other_train)}) ||| dev({len(other_dev)})")
[new_train.append(s) for s in other_train]
[new_dev.append(s) for s in other_dev]
# confirm numbers of stuff:
print(f"LEN NEW TRAIN: {len(new_train)} ||| LEN NEW DEV {len(new_dev)}")
print(f"Outputs... ")
random.shuffle(new_train)
random.shuffle(new_dev)
# Print new TRAIN
new_file = os.path.join(path_to_naija, "naija_and_all.train.json")
with open(new_file, 'w', encoding="utf-8") as o:
json.dump(new_train, o, indent=0)
# Print new DEV
new_file = os.path.join(path_to_naija, "naija_and_all.dev.json")
with open(new_file, 'w', encoding="utf-8") as o:
json.dump(new_dev, o, indent=0)
def main():
#do everything on cpu
#torch.device("cpu")
#tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
#make_singlish(tokenizer)
#make_naija(tokenizer)
make_haitian()
main()