-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_vae_officeHome_zNorm.py
273 lines (247 loc) · 13.5 KB
/
train_vae_officeHome_zNorm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import os
import time
import torch
import argparse
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import scipy,scipy.io
from sklearn.preprocessing import normalize
from torchvision import transforms
from torch.utils.data import DataLoader,Dataset
from collections import defaultdict
import numpy as np
from models_zNorm import VAE,Classifier
from sklearn.neighbors import KNeighborsClassifier
import pdb
domainSet =['Art','Clipart','Product','RealWorld']
class TwoModalDataset(Dataset):
def __init__(self,phase='train',sourceDomainIndex=0, targetDomainIndex = 0,trialIndex=0):
self.phase = phase
self.load_mat(sourceDomainIndex,targetDomainIndex,trialIndex)
self.pseudo_label_B = np.ones_like(self.label_B)*-1 # this will be dynamically updated during training
self.pseudo_score_B = np.zeros_like(self.label_B)
def load_mat(self,sourceDomainIndex=0, targetDomainIndex=0,trialIndex=0):
# load features and labels
data_dir = '../data/OfficeHomeDataset_10072016/'
# data_dir = 'E:\DomainAdaptation\OfficeHomeDataset_10072016/'
data_A = scipy.io.loadmat(data_dir+'OfficeHome-'+domainSet[sourceDomainIndex]+'-resnet50-noft.mat')
feature_A = data_A['resnet50_features'][:,:,0,0]
self.feature_A = normalize(feature_A,norm='l2')
self.label_A = data_A['labels'][0,]
self.num_class = len(np.unique(self.label_A))
data_B = scipy.io.loadmat(data_dir+'OfficeHome-'+domainSet[targetDomainIndex]+'-resnet50-noft.mat')
feature_B = data_B['resnet50_features'][:,:,0,0]
self.feature_B = normalize(feature_B,norm='l2')
self.label_B = data_B['labels'][0,]
def __len__(self):
if self.phase == 'train': #or self.phase == 'val':
return self.feature_A.shape[0]
if self.phase == 'test':
return self.feature_B.shape[0]
def __getitem__(self,idx):
if self.phase == 'test':
idx_B = idx
return self.feature_B[idx_B,:],self.label_B[idx_B]
# return a pair of regular and xray image features, which are paired randomly
label = self.label_A[idx]
#indicesB_this_label = np.argwhere((self.pseudo_label_B==label) & (self.pseudo_score_B > -1))
indicesB_this_label = np.argwhere(self.pseudo_label_B==label)
if len(indicesB_this_label) > 0:
idx_B = np.random.choice(indicesB_this_label[:,0])
return self.feature_A[idx,:], self.feature_B[idx_B,:],self.label_A[idx],self.pseudo_label_B[idx_B]
else:
idx_B = np.random.randint(len(self.label_B))
return self.feature_A[idx,:], self.feature_B[idx_B,:], self.label_A[idx], np.ones_like(self.label_A[idx]) * -1
def test_model(model,dataset,dataloader,device,model_type='knn'):
since = time.time()
num_class = dataset.num_class
running_corrects = np.zeros((num_class,))
num_sample_per_class = np.zeros((num_class,))
# Iterate over data.
for index, (features,labels) in enumerate(dataloader):
features = features.to(device)
labels = labels.to(device)
# zero the parameter gradients
# forward
# track history if only in train
with torch.set_grad_enabled(False):
if model_type=='knn':
preds = model.predict(features)
if model_type=='mlp':
model.eval()
preds = model(features)
preds = preds.cpu().detach().numpy()
labels = labels.cpu().detach().numpy()
if index == 0:
outputs_test = preds
labels_test = labels
else:
outputs_test = np.concatenate((outputs_test, preds), 0)
labels_test = np.concatenate((labels_test, labels), 0)
if model_type=='mlp':
preds = np.argmax(outputs_test,1)
scores = np.exp(np.max(outputs_test,1))
if model_type=='knn':
preds = outputs_test
for i in range(len(labels_test)):
num_sample_per_class[labels_test[i]] += 1
if preds[i]==labels_test[i]:
running_corrects[labels_test[i]] += 1
acc_per_class = running_corrects / num_sample_per_class
acc = np.mean(acc_per_class)
time_elapsed = time.time() - since
#print('Testing complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
print('per-image acc:{:2.4f}; per-class acc:{:2.4f}'.format(running_corrects.sum()/num_sample_per_class.sum(),acc))
return preds, scores, acc_per_class,acc
def loss_fn(recon_xS,recon_xS2, xS, recon_xT,recon_xT2, xT, meanS, log_varS, meanT, log_varT,yT,epoch):
criterion = torch.nn.MSELoss(size_average=False)
mask = yT!=-1
reconstruction_loss = criterion(recon_xS, xS) + criterion(recon_xT[mask,:], xT[mask,:])
cross_reconstruction_loss = criterion(recon_xS2[mask,:], xT[mask,:]) + criterion(recon_xT2[mask,:], xS[mask,:])
KLD = -0.5 * torch.sum(1 + log_varS - meanS.pow(2) - log_varS.exp()) -0.5 * torch.sum(1 + log_varT[mask,:] - meanT[mask,:].pow(2) - log_varT[mask,:].exp())
distance = torch.sqrt(torch.sum((meanS[mask,:] - meanT[mask,:]) ** 2, dim=1) + torch.sum((torch.sqrt(log_varS[mask,:].exp()) - torch.sqrt(log_varT[mask,:].exp())) ** 2, dim=1))
distance = distance.sum()
weight = epoch*5e-4
#print(f'{reconstruction_loss:1.4f}, {cross_reconstruction_loss:1.4f}, {distance:1.4f},{KLD:1.4f}')
return (reconstruction_loss + cross_reconstruction_loss) / xS.size(0)
def train_classifier(classifier, vae, datasets, dataloaders, args, optimizer_cls, scheduler_cls):
device = args.device
classifier.train()
vae.eval()
acc_per_class = np.zeros((args.num_epochs_cls,datasets['train'].num_class))
acc = np.zeros((args.num_epochs_cls,))
for epoch in range(args.num_epochs_cls):
#print(f'Classifier training epoch {epoch:d}/{args.num_epochs_cls:d}')
for iteration, (xS,xT,yS,yT) in enumerate(dataloaders['train']):
xS,xT,yS,yT = xS.to(device), xT.to(device), yS.to(device), yT.to(device)
#x,y = next_batch(vae,batch_size=1024)
recon_xS,recon_xT = generate_z(xS,xT,vae,device)
mask = yT!=-1
xT = xT[mask,:]
yT = yT[mask]
recon_xT = recon_xT[mask,:]
xtrain = torch.cat((xS,xT,recon_xS,recon_xT),dim=0)
ytrain = torch.cat((yS,yT,yS,yT),dim=0)
output = classifier(xtrain)
loss_cls = classifier.lossfunction(output, ytrain)
optimizer_cls.zero_grad()
loss_cls.backward()
optimizer_cls.step()
# test
scheduler_cls.step()
#print(f'epoch:{epoch:02d} ',end='')
#preds,scores,acc_per_class[epoch,],acc[epoch] = test_model(classifier, datasets['test'], dataloaders['test'],device,model_type='mlp')
#scipy.io.savemat('./results/'+args.filename+'.mat',mdict={'acc_per_class':acc_per_class,'acc':acc})
return classifier
def train_vae(vae, dataloader,args, optimizer, scheduler):
############################################################
# train CVAE
############################################################
device = args.device
vae.train()
for epoch in range(args.num_epochs_vae):
tracker_epoch = defaultdict(lambda: defaultdict(dict))
for iteration, (xS,xT,yS,yT) in enumerate(dataloader):
xS,xT,yS,yT = xS.to(device), xT.to(device), yS.to(device), yT.to(device)
recon_xS, recon_xS2, meanS, log_varS, zS = vae(xS, d=torch.zeros_like(xS[:,0]).long().to(device))
recon_xT, recon_xT2, meanT, log_varT, zT = vae(xT, d=torch.ones_like(xT[:,0]).long().to(device))
loss = loss_fn(recon_xS, recon_xS2, xS, recon_xT,recon_xT2, xT, meanS, log_varS, meanT, log_varT,yT,epoch)
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
return vae
############################################################
#Generating pseudo training samples and train/test a classifier
############################################################
def generate_z(xS,xT,vae,device):
vae.eval()
recon_xS, recon_xS2, meanS, log_varS, zS = vae(xS, d=torch.zeros_like(xS[:,0]).long().to(device))
recon_xT, recon_xT2, meanT, log_varT, zT = vae(xT, d=torch.ones_like(xT[:,0]).long().to(device))
return recon_xS2, recon_xT2
def main(args):
torch.manual_seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(args.seed)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
args.device = device
ts = time.time()
datasets = {x: TwoModalDataset(phase=x,sourceDomainIndex=args.sourceDomainIndex, targetDomainIndex=args.targetDomainIndex,trialIndex=args.trialIndex) for x in ['train','test']}
dataloaders={}
dataloaders['train'] = DataLoader(dataset=datasets['train'], batch_size=args.batch_size, shuffle=True, num_workers = 8)
dataloaders['trainall'] = DataLoader(dataset=datasets['train'], batch_size=len(datasets['train']), shuffle=True, num_workers = 8)
dataloaders['test'] = DataLoader(dataset=datasets['test'], batch_size=len(datasets['test']), shuffle=False, num_workers = 8)
# define a classifier
classifier = Classifier(input_dim=2048,num_labels=65).to(device) # train and test a classifier
optimizer_cls = torch.optim.Adam(classifier.parameters(), lr=0.01)
scheduler_cls = torch.optim.lr_scheduler.StepLR(optimizer_cls, step_size=25, gamma=0.1)
num_epochs_cls = 50
acc_per_class = np.zeros((args.num_iter,65))
# define the VAE
vae = VAE(
encoder_layer_sizes=args.encoder_layer_sizes,
latent_size=args.latent_size,
decoder_layer_sizes=args.decoder_layer_sizes,
num_domains = 2,dropout=0.5).to(device)
optimizer_vae = torch.optim.Adam(vae.parameters(), lr=args.learning_rate)
scheduler_vae = torch.optim.lr_scheduler.StepLR(optimizer_vae, step_size=50, gamma=0.1)
for iter in range(args.num_iter+5):
if iter>0:
# define VAE
args.encoder_layer_sizes[0] = 2048
vae = VAE(
encoder_layer_sizes=args.encoder_layer_sizes,
latent_size=args.latent_size,
decoder_layer_sizes=args.decoder_layer_sizes,
num_domains = 2,dropout=0.5).to(device)
optimizer_vae = torch.optim.Adam(vae.parameters(), lr=args.learning_rate)
scheduler_vae = torch.optim.lr_scheduler.StepLR(optimizer_vae, step_size=50, gamma=0.1)
# train VAE
vae = train_vae(vae, dataloaders['train'], args, optimizer_vae, scheduler_vae)
# train a classifier
classifier = Classifier(input_dim=2048,num_labels=65).to(device) # train and test a classifier
optimizer_cls = torch.optim.Adam(classifier.parameters(), lr=0.01)
scheduler_cls = torch.optim.lr_scheduler.StepLR(optimizer_cls, step_size=25, gamma=0.1)
classifier = train_classifier(classifier, vae, datasets, dataloaders, args, optimizer_cls, scheduler_cls)
# classify target samples
print(f'Iter {iter:02d}: ',end='')
pseudo_labels, scores, acc_per_class, acc_per_image = test_model(classifier,datasets['test'],dataloaders['test'], device,model_type='mlp')
# update pseudo-labels
datasets['train'].pseudo_label_B = -1*np.ones_like(pseudo_labels)
#'''
trustable = np.zeros((len(pseudo_labels),),dtype=np.int32)
numSelected = np.int32((iter+1)/args.num_iter*len(pseudo_labels)/65)
for iCls in range(65):
thisClassFlag = pseudo_labels==iCls
numThisClass = thisClassFlag.sum()
if numThisClass > 0:
threshold = sorted(scores[thisClassFlag],reverse=True)[min(numThisClass-1,numSelected)]
trustable = trustable + np.int32((scores>=threshold) & thisClassFlag)
datasets['train'].pseudo_label_B[trustable==1] = pseudo_labels[trustable==1]
print((datasets['train'].pseudo_label_B>-1).sum())
#'''
#datasets['train'].pseudo_label_B[scores>0.9-iter*0.1] = pseudo_labels[scores>0.9-iter*0.1]
datasets['train'].pseudo_score_B = scores
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--num_epochs_vae", type=int, default=50)
parser.add_argument("--num_epochs_cls", type=int, default=50)
parser.add_argument("--batch_size", type=int, default=32)
parser.add_argument("--learning_rate", type=float, default=0.001)
parser.add_argument("--encoder_layer_sizes", type=list, default=[2048, 512])
parser.add_argument("--decoder_layer_sizes", type=list, default=[512, 2048])
parser.add_argument("--latent_size", type=int, default=64)
parser.add_argument("--print_every", type=int, default=100)
parser.add_argument("--sourceDomainIndex", type=int, default=1)
parser.add_argument("--targetDomainIndex", type=int, default=0)
parser.add_argument("--trialIndex", type=int, default=0)
parser.add_argument("--fig_root", type=str, default='figs')
parser.add_argument("--num_iter", type=int, default=15)
args = parser.parse_args()
source = domainSet[args.sourceDomainIndex]
target = domainSet[args.targetDomainIndex]
args.filename = 'officeHome-'+source+'-'+target+'-trial'+str(args.trialIndex)+'-numIter-'+str(args.num_iter)+'-vaeEpochs-'+str(args.num_epochs_vae)+'-encoder_layer_sizes'+str(args.encoder_layer_sizes)+'-latSize-'+str(args.latent_size)+'-bs-'+str(args.batch_size)+'lr'+str(args.learning_rate)
print(args.filename)
main(args)