-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFruit_Growth_ConstantBoundary3.m
315 lines (282 loc) · 11.1 KB
/
Fruit_Growth_ConstantBoundary3.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
clear all
% Couldn't fix the problem, but I optimized a couple for loops
%Fruit Growth Algorithm
%For each increment of time, compute dc(j)-> dw(k)->dA(k)
%Update network of cells to adjust cell area/volume
fid = figure;
writerObj = VideoWriter('Fruit_Growth3.avi');
writerObj.FrameRate = 7;
open(writerObj);
%Constants:
R=8.31; %Gas constant std units
T=293; %Temp (kelvin)
alpha=1;
D=10^(-14)*10000; %Diffusivity of sugar
phi=1;
Z=10^(-11); % Z = 10^-7 <- testing
kappa=1000/15;
Ciso=.15; %isotonic sugar concentration
Wiso=0.0001; %isotonic water mass
Cout=.75*Ciso;%.5*Ciso; %sugar concentration out of bounds
Pout=0; %Pressure out of bounds
tfinal=60; %number of iterations
dt=3600*12; %time step dt=5 <-- testing
Cin=Cout; %Sugar brought in
Win=Wiso; %Water brought in
Pin=0.3;
%Initialize Mesh
m=8; n=8; % of cells in each direction
TotCells=m*n; % total number of cells
TotNodes=(m+1)*(n+1); % total number of nodes
CellXWid=.01; CellYWid=.01; % side lengths (in meters) for an individual cell
Nodes = zeros(TotNodes,2); % matrix for Nodes coords
Cells = zeros(TotCells,4); % index into Nodes for each cell node
% (lower left to upper left, counter-clockwise)
hold on;
% Set up the Nodes
for i=1:m+1
for j=1:n+1
k=(i-1)*(n+1) + j;
Nodes(k,1)=j*CellXWid; Nodes(k,2)=i*CellYWid;
end
end
% Plot the nodes
for k=1:TotNodes
plot(Nodes(k,1),Nodes(k,2),'bO');
end
% Set up Cells, i.e. specify the 4 global node indices for each cell vertex
for i=1:m
for j=1:n
k = (i-1)*m+j;
Cells(k,1)=k+i-1; Cells(k,2)=k+1+i-1; Cells(k,3)=Cells(k,2)+n+1; Cells(k,4)=Cells(k,2)+n;
end
end
%Calculate Lengths
L=zeros(n*m,4);
for i=1:n*m
for j=1:3
L(i,j)=norm(Nodes(Cells(i,j),:)-Nodes(Cells(i,j+1),:));
end
L(i,4)=norm(Nodes(Cells(i,4),:)-Nodes(Cells(i,1),:));
end
%Store initial lengths
Linit=L;
%Calculate Areas with shoelace formula
B=zeros(n*m,1);
for i=1:n*m
B(i)=.5*(det(Nodes([Cells(i,1),Cells(i,2)],:))+det(Nodes([Cells(i,2),Cells(i,3)],:))+det(Nodes([Cells(i,3),Cells(i,4)],:))+det(Nodes([Cells(i,4),Cells(i,1)],:)));
end
A=zeros(n,m);
for i=1:n
for j=1:m
A(i,j)=B((j-1)*4+i);
end
end
%Initialize dx and dy
cx=zeros(n*m,1);
cy=zeros(n,m,1);
for i=1:n*m
cx(i)=(L(i,2)+L(i,4))/2;
cy(i)=(L(i,3)+L(i,1))/2;
end
dx=zeros(n,m);
dy=zeros(n,m);
for i=1:n
for j=1:m
dx(i,j)=cx((j-1)*4+i);
dy(i,j)=cy((j-1)*4+i);
end
end
%Initial concentrations
C=Ciso*ones(n,m);
%Initial water
W=Wiso*ones(n,m);
%Initial Pressure
P=zeros(n,m);
%Flux Functions Initializations
Fx=zeros(n,m);
Fy=zeros(n,m);
JL=zeros(n,m);
JR=zeros(n,m);
JT=zeros(n,m);
JB=zeros(n,m);
RHSC=zeros(n,m);
RHSW=zeros(n,m);
UB=zeros(n,m);
UT=zeros(n,m);
UL=zeros(n,m);
UR=zeros(n,m);
%% Update time step
Lnew=zeros(n,m);
%parpool
for t=1:tfinal
%Move Vertices
%Assume squares (version1)
Lnew=A.^(1/2);
L=reshape(Lnew,n*m,1);
L=repmat(L,4);
%New dx&dy
cx = (L(:,2)+L(:,4))/2;
cy = (L(:,2)+L(:,4))/2;
dx = Lnew;
dy = Lnew;
%% Define Fluxes of forward difference step
for i=1:n
for j=1:m
if i==n && j~=1 && j~=m
Fx(i,j)=-D*(Cout-C(i-1,j))/(2*dx(i,j));
Fy(i,j)=-D*(C(i,j+1)-C(i,j-1))/(2*dy(i,j));
JB(i,j)=Z*(P(i,j)-P(i,j-1)-alpha*R*T*(C(i,j)-C(i,j-1))); %Left
JT(i,j)=Z*(P(i,j)-P(i,j+1)-alpha*R*T*(C(i,j)-C(i,j+1))); %Right
JR(i,j)=Z*(P(i,j)-Pout-alpha*R*T*(C(i,j)-Cout)); %Top
JL(i,j)=Z*(P(i,j)-P(i-1,j)-alpha*R*T*(C(i,j)-C(i-1,j))); %Bottom
%newRHSC(i,j)=-(-Fx(i-1,j))/(2*dx(i,j))-(Fy(i,j+1)-Fy(i,j-1))/(2*dy(i,j));
elseif i==n&&j==1
Fx(i,j)=-D*(Cout-C(i-1,j))/(2*dx(i,j));
Fy(i,j)=-D*(C(i,j+1)-Cout)/(2*dy(i,j));
JB(i,j)=Z*(P(i,j)-Pout-alpha*R*T*(C(i,j)-Cout)); %Left
JT(i,j)=Z*(P(i,j)-P(i,j+1)-alpha*R*T*(C(i,j)-C(i,j+1))); %Right
JR(i,j)=Z*(P(i,j)-Pout-alpha*R*T*(C(i,j)-Cout)); %Top
JL(i,j)=Z*(P(i,j)-P(i-1,j)-alpha*R*T*(C(i,j)-C(i-1,j))); %Bottom
%newRHSC(i,j)=-(-Fx(i-1,j))/(2*dx(i,j))-(Fy(i,j+1))/(2*dy(i,j));
elseif i==n&&j==m
Fx(i,j)=-D*(Cout-C(i-1,j))/(2*dx(i,j));
Fy(i,j)=-D*(Cout-C(i,j-1))/(2*dy(i,j));
JB(i,j)=Z*(P(i,j)-P(i,j-1)-alpha*R*T*(C(i,j)-C(i,j-1))); %Left
JT(i,j)=Z*(P(i,j)-Pout-alpha*R*T*(C(i,j)-Cout)); %Right
JR(i,j)=Z*(P(i,j)-Pout-alpha*R*T*(C(i,j)-Cout)); %Top
JL(i,j)=Z*(P(i,j)-P(i-1,j)-alpha*R*T*(C(i,j)-C(i-1,j))); %Bottom
%newRHSC(i,j)=-(-Fx(i-1,j))/(2*dx(i,j))-(-Fy(i,j-1))/(2*dy(i,j));
elseif i==1&&j~=1 && j~=m
Fx(i,j)=-D*(C(i+1,j)-Cout)/(2*dx(i,j));
Fy(i,j)=-D*(C(i,j+1)-C(i,j-1))/(2*dy(i,j));
JB(i,j)=Z*(P(i,j)-P(i,j-1)-alpha*R*T*(C(i,j)-C(i,j-1))); %Left
JT(i,j)=Z*(P(i,j)-P(i,j+1)-alpha*R*T*(C(i,j)-C(i,j+1))); %Right
JR(i,j)=Z*(P(i,j)-P(i+1,j)-alpha*R*T*(C(i,j)-C(i+1,j))); %Top
JL(i,j)=Z*(P(i,j)-Pout-alpha*R*T*(C(i,j)-Cout)); %Bottom
%newRHSC(i,j)=-(Fx(i+1,j))/(2*dx(i,j))-(Fy(i,j+1)-Fy(i,j-1))/(2*dy(i,j));
elseif i==1&&j==1
Fx(i,j)=-D*(C(i+1,j)-Cin)/(2*dx(i,j));
Fy(i,j)=-D*(C(i,j+1)-Cin)/(2*dy(i,j));
JB(i,j)=Z*(P(i,j)-Pin-alpha*R*T*(C(i,j)-Cin)); %Left
JT(i,j)=Z*(P(i,j)-P(i,j+1)-alpha*R*T*(C(i,j)-C(i,j+1))); %Right
JR(i,j)=Z*(P(i,j)-P(i+1,j)-alpha*R*T*(C(i,j)-C(i+1,j))); %Top
JL(i,j)=Z*(P(i,j)-Pin-alpha*R*T*(C(i,j)-Cin)); %Bottom
%newRHSC(i,j)=-(Fx(i+1,j))/(2*dx(i,j))-(Fy(i,j+1))/(2*dy(i,j));
elseif i==1&&j==m
Fx(i,j)=-D*(C(i+1,j)-Cout)/(2*dx(i,j));
Fy(i,j)=-D*(Cout-C(i,j-1))/(2*dy(i,j));
JB(i,j)=Z*(P(i,j)-P(i,j-1)-alpha*R*T*(C(i,j)-C(i,j-1))); %Left
JT(i,j)=Z*(P(i,j)-Pout-alpha*R*T*(C(i,j)-Cout)); %Right
JR(i,j)=Z*(P(i,j)-P(i+1,j)-alpha*R*T*(C(i,j)-C(i+1,j))); %Top
JL(i,j)=Z*(P(i,j)-Pout-alpha*R*T*(C(i,j)-Cout)); %Bottom
%newRHSC(i,j)=-(Fx(i+1,j))/(2*dx(i,j))-(-Fy(i,j-1))/(2*dy(i,j));
elseif j==1&&i~=1&&i~=n
Fx(i,j)=-D*(C(i+1,j)-C(i-1,j))/(2*dx(i,j));
Fy(i,j)=-D*(C(i,j+1)-Cout)/(2*dy(i,j));
JB(i,j)=Z*(P(i,j)-Pout-alpha*R*T*(C(i,j)-Cout)); %Left
JT(i,j)=Z*(P(i,j)-P(i,j+1)-alpha*R*T*(C(i,j)-C(i,j+1))); %Right
JR(i,j)=Z*(P(i,j)-P(i+1,j)-alpha*R*T*(C(i,j)-C(i+1,j))); %Top
JL(i,j)=Z*(P(i,j)-P(i-1,j)-alpha*R*T*(C(i,j)-C(i-1,j))); %Bottom
%newRHSC(i,j)=-(Fx(i+1,j)-Fx(i-1,j))/(2*dx(i,j))-(Fy(i,j+1))/(2*dy(i,j));
elseif j==m&&i~=1&&i~=n
Fx(i,j)=-D*(C(i+1,j)-C(i-1,j))/(2*dx(i,j));
Fy(i,j)=-D*(Cout-C(i,j-1))/(2*dy(i,j));
JB(i,j)=Z*(P(i,j)-P(i,j-1)-alpha*R*T*(C(i,j)-C(i,j-1))); %Left
JT(i,j)=Z*(P(i,j)-Pout-alpha*R*T*(C(i,j)-Cout)); %Right
JR(i,j)=Z*(P(i,j)-P(i+1,j)-alpha*R*T*(C(i,j)-C(i+1,j))); %Top
JL(i,j)=Z*(P(i,j)-P(i-1,j)-alpha*R*T*(C(i,j)-C(i-1,j))); %Bottom
%newRHSC(i,j)=-(Fx(i+1,j)-Fx(i-1,j))/(2*dx(i,j))-(-Fy(i,j-1))/(2*dy(i,j));
else
Fx(i,j)=-D*(C(i+1,j)-C(i-1,j))/(2*dx(i,j));
Fy(i,j)=-D*(C(i,j+1)-C(i,j-1))/(2*dy(i,j));
JB(i,j)=Z*(P(i,j)-P(i,j-1)-alpha*R*T*(C(i,j)-C(i,j-1))); %Left
JT(i,j)=Z*(P(i,j)-P(i,j+1)-alpha*R*T*(C(i,j)-C(i,j+1))); %Right
JR(i,j)=Z*(P(i,j)-P(i+1,j)-alpha*R*T*(C(i,j)-C(i+1,j))); %Top
JL(i,j)=Z*(P(i,j)-P(i-1,j)-alpha*R*T*(C(i,j)-C(i-1,j))); %Bottom
%newRHSC(i,j)=-(Fx(i+1,j)-Fx(i-1,j))/(2*dx(i,j))-(Fy(i,j+1)-Fy(i,j-1))/(2*dy(i,j));
end
end
end
for i=1:n
for j=1:m
if i==n && j~=1 && j~=m
RHSC(i,j)=-(-D/(2*dx(n,j))*(Cout-C(n,j))-Fx(n-1,j))/(2*dx(n,j))...
- (Fy(n,j+1) - Fy(n,j-1))/(2*dy(n,j));
elseif i==n&&j==1
nFx1 = -D/(2*dx(n,1))*(Cout - C(n-1,1));
nFx2 = -D/(2*dx(n-1,1))*(C(n,1)-C(n-2,1));
nFy1 = -D/(2*dy(n,2))*(C(n,3)-C(n,1));
nFy2 = -D/(2*dy(n,1))*(C(n,1)-Cout);
RHSC(i,j)=-(nFx1-nFx2)/(2*dx(n,1)) ...
-(nFy1-nFy2)/(2*dy(n,1));
elseif i==n&&j==m
nFx1 = -D/(2*dx(n,m))*(Cout - C(n,m));
nFx2 = -D/(2*dx(n-1,m))*(C(n,m)-C(n-2,m));
nFy1 = -D/(2*dy(n,m))*(Cout-C(n,m));
nFy2 = -D/(2*dy(n,m-1))*(C(n,m)-C(n,m-2));
RHSC(i,j)=-(nFx1-nFx2)/(2*dx(n,m)) ...
-(nFy2-nFy1)/(2*dy(n,m));
elseif i==1&&j~=1 && j~=m
RHSC(i,j)=-(Fx(2,j)-Fx(1,j)+D/(2*dx(1,j))*(C(1,j)-Cout))/(2*dx(1,j))...
-(Fy(1,j+1)*Fy(1,j-1))/(2*dy(1,j));
elseif i==1&&j==1
RHSC(i,j)=-(Fx(2,1)+D/(2*dx(1,1))*(C(1,1)-Cout))/(2*dx(1,1))...
-(Fy(1,2)+D/(2*dy(1,1))*(C(1,1)-Cout))/(2*dy(1,1));
elseif i==1&&j==m
RHSC(i,j)=-(Fx(2,m)+D/(2*dx(1,m))*(C(1,m)-Cout))/(2*dx(1,m))...
-(-D/(2*dy(1,m))*(Cout-C(1,m))-Fy(1,m-1))/(2*dy(1,m));
elseif j==1&&i~=1&&i~=n
RHSC(i,j)=-(Fx(i+1,1)-Fx(i-1,1))/(2*dx(i,1))...
-(Fy(i,2) + D/(2*dy(i,1))*(C(i,1)-Cout))/(2*dy(i,1));
elseif j==m&&i~=1&&i~=n
RHSC(i,j)=-(Fx(i+1,j)-Fx(i-1,j))/(2*dx(i,j))-(-D*(Cout-C(i,j-1))/(2*dy(i,j))-Fy(i,j-1))/(2*dy(i,j));
else
RHSC(i,j)=-(Fx(i+1,j)-Fx(i-1,j))/(2*dx(i,j))-(Fy(i,j+1)-Fy(i,j-1))/(2*dy(i,j));
end
end
end
UB=Lnew.*JB; %Bottom
UR=Lnew.*JR; %Right
UT=Lnew.*JT; %Top
UL=Lnew.*JL; %Left
RHSW=-2*(UT+UB+UL+UR);
%% Update Concentrations, Area, and Pressures
%Update Concentrations, and Area
C=RHSC*dt+C;
W=RHSW*dt+W;
A=W/(phi);
%Update Pressures
Q=zeros(n*m,1);
for i=1:n*m
Q(i)=kappa/4*((L(i,1)-Linit(i,1))./Linit(i,1)+...
(L(i,2)-Linit(i,2))./Linit(i,2)+...
(L(i,3)-Linit(i,3))./Linit(i,3)+...
(L(i,4)-Linit(i,4))./Linit(i,4));
end
for i=1:n
for j=1:m
P(i,j)=Q((j-1)*4+i);
end
end
%Plot Concentration
% Plot Cell Sizes
figure(fid);
Cell_Growth(A/Wiso, n, t/2);
frame = getframe(gcf);
writeVideo(writerObj, frame);
% % Plot the cells
% for k=1:TotCells
% for r=1:4
% x1=Nodes(Cells(k,r),1); y1=Nodes(Cells(k,r),2);
% if r<4
% x2=Nodes(Cells(k,r+1),1); y2=Nodes(Cells(k,r+1),2);
% else
% x2=Nodes(Cells(k,1),1); y2=Nodes(Cells(k,1),2);
% end
% x=[x1 x2]; y=[y1 y2];
% plot(x,y);
% end
% end
end
close(writerObj);