-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathmde.py
195 lines (173 loc) · 6.84 KB
/
mde.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
#python3.10
"""
Monocular Depth Estimator
This file contains the Module for Monocular Depth Estimation, including:
- Midas3.1: https://github.com/isl-org/MiDaS
- zoedepth: https://github.com/isl-org/ZoeDepth
- Metric3D: https://github.com/YvanYin/Metric3D
- Marigold: https://github.com/prs-eth/Marigold
- Depth-Anything: https://github.com/LiheYoung/Depth-Anything
"""
import os, sys
import importlib
import torch
import torch.nn as nn
import numpy as np
from PIL import Image
# import zoedepth builder
from models.monoD.zoeDepth.models.builder import build_model
from models.monoD.zoeDepth.utils.config import get_config
from models.monoD.depth_anything.build import DepthAnything
from easydict import EasyDict as edict
class MonoDEst(nn.Module):
def __init__(self, args):
super(MonoDEst, self).__init__()
# build the chosen model
if args.mde_name == "zoedepth_nk":
conf = get_config("zoedepth_nk", "infer")
model_zoe_nk = build_model(conf)
model_zoe_nk.eval()
model_zoe_nk = model_zoe_nk.cuda()
self.model = model_zoe_nk
elif args.mde_name == "zoedepth_k":
conf = get_config("zoedepth", "infer", config_version="kitti")
model_zoe_k = build_model(conf)
model_zoe_k.eval()
model_zoe_k = model_zoe_k.cuda()
self.model = model_zoe_k
elif args.mde_name == "depthAny":
cfg = edict({
"encoder": "vits",
"load_from": "models/monoD/depth_anything/ckpts/depth_anything_vits14.pth",
"localhub": True
})
self.model = DepthAnything(cfg)
# get one metric model
conf = get_config("zoedepth_nk", "infer")
model_zoe_nk = build_model(conf)
model_zoe_nk.eval()
model_zoe_nk = model_zoe_nk.cuda()
self.metric3d = model_zoe_nk
self.mde_name = args.mde_name
def infer(self, rgbs, scale=None, shift=None):
"""
Infer the depth map from the input RGB image
"""
# get the depth map
if self.mde_name == "depthAny":
depth_map = self.model.infer(rgbs)
metric_dp = self.metric3d.infer(rgbs[:20])
metric_dp_inv = 1/metric_dp
dp_0_rel = depth_map[:20]
scale,shift = np.polyfit(dp_0_rel.view(-1).cpu().numpy(),
metric_dp_inv.view(-1).cpu().numpy(), 1)
depth_map = depth_map*scale + shift
depth_map = (1/depth_map).clamp(0.01, 65)
else:
depth_map = self.model.infer(rgbs)
return depth_map
def write_ply(points,colors,path_ply,mask=None):
if mask is not None:
num = np.sum(mask)
else:
num = points.shape[0]
ply_header = '''ply
format ascii 1.0
element vertex {}
property float x
property float y
property float z
property uchar red
property uchar green
property uchar blue
end_header
'''.format(num)
if mask is not None:
with open(path_ply+'_mask'+'.ply', 'w') as f:
f.write(ply_header)
for i in range(points.shape[0]):
if mask.reshape(-1)[i]:
f.write('{} {} {} {} {} {}\n'.format(points[i,0], points[i,1], points[i,2],
int(colors[i, 0]*255), int(colors[i, 1]*255), int(colors[i, 2]*255)))
else:
with open(path_ply+'.ply', 'w') as f:
f.write(ply_header)
for i in range(points.shape[0]):
f.write('{} {} {} {} {} {}\n'.format(points[i,0], points[i,1], points[i,2],
int(colors[i, 0]*255), int(colors[i, 1]*255), int(colors[i, 2]*255)))
#TODO: unit test
if __name__ == "__main__":
import cv2
import matplotlib.pyplot as plt
import imageio
def pixel_to_focal(pixels_a, K_a):
# project pixels_b to 3D points (x, y, z) in cam_a coordinates
points_a_cam = np.linalg.inv(K_a) @ pixels_a
return points_a_cam
def focal_to_camera(points_a_cam, depth_a):
points_a_cam *= depth_a.flatten()
return points_a_cam
def get_pixel(H, W):
# get 2D pixels (u, v) for image_a in cam_a pixel space
u_a, v_a = np.meshgrid(np.arange(W), np.arange(H))
u_a = np.flip(u_a, axis=1)
v_a = np.flip(v_a, axis=0)
pixels_a = np.stack([
u_a.flatten() + 0.5,
v_a.flatten() + 0.5,
np.ones_like(u_a.flatten())
], axis=0)
return pixels_a
def get_intrinsics(H, W):
"""
Intrinsics for a pinhole camera model.
Assume fov of 55 degrees and central principal point.
"""
f = 0.5 * W / np.tan(0.5 * 55 * np.pi / 180.0)
cx = 0.5 * W
cy = 0.5 * H
return np.array([[f, 0, cx],
[0, f, cy],
[0, 0, 1]])
cfg = edict({
"encoder": "vits",
"load_from": "models/monoD/depth_anything/ckpts/depth_anything_vits14.pth",
"localhub": True
})
model = DepthAnything(cfg)
DATA_ROOT = "/nas2/xyx/kubric/movi_f/"
SCENE_NUM = "0"
FRAME_NUM = f"{int(0):05d}"
# img_np = cv2.imread(os.path.join(DATA_ROOT,"512x512_frames", SCENE_NUM, FRAME_NUM+".jpeg"))
img_np = cv2.imread("/nas2/xyx/BADJA/BADJA/DAVIS/JPEGImages/Full-Resolution/car-roundabout/00000.jpg")
img = torch.from_numpy(img_np).permute(2, 0, 1).unsqueeze(0).float().cuda()
# load the RGB image
depth = model.infer(img/255).detach().cpu().numpy()
depth = (depth-depth.min())/(depth.max()-depth.min())
# depth from depth anything
H, W, _ = img_np.shape
K = get_intrinsics(H, W)
factor = H // 1
pixels = get_pixel(H, W)/factor
# focals = pixel_to_focal(pixels, K)
# points = focal_to_camera(focals, depth)
points = pixels.transpose(1, 0)
points[:,2]=depth.reshape(-1)
colors = img_np.reshape(-1, 3) / 255.0
write_ply(points, colors, 'depthAny.ply')
# depth from the gt depth
depth_gt = imageio.v2.imread(os.path.join(DATA_ROOT, "512x512_depth", SCENE_NUM, FRAME_NUM+".png"))/1000
# points = focal_to_camera(focals, depth_gt/1000)
min = depth_gt[depth_gt>0].min()
depth_gt_inv = 1/(depth_gt.clip(min, 65))
points = pixels.transpose(1, 0)
points[:,2]=depth_gt.reshape(-1)
colors = img_np.reshape(-1, 3) / 255.0
write_ply(points, colors, 'depthGT.py')
# depth of align
scale, shift = np.polyfit(depth.reshape(-1),depth_gt_inv.reshape(-1), 1)
depth_align = depth*scale + shift
points = pixels.transpose(1, 0)
points[:,2]=1/depth_align.reshape(-1)
colors = img_np.reshape(-1, 3) / 255.0
write_ply(points, colors, 'depthAlign.py')