|
| 1 | +#![cfg_attr(feature = "doc-images", |
| 2 | +cfg_attr(all(), |
| 3 | +doc = ::embed_doc_image::embed_image!("eq-basis-function", "doc-images/equations/basis-function.svg"), |
| 4 | +doc = ::embed_doc_image::embed_image!("eq-basis-prefactor", "doc-images/equations/basis-prefactor.svg"), |
| 5 | +doc = ::embed_doc_image::embed_image!("eq-basis-function-zero", "doc-images/equations/basis-function-zero.svg")))] |
| 6 | +//! Evaluates the basis spline functions using the Cox-de Boor-Mansfield recurrence relation |
| 7 | +//! |
| 8 | +//! ![The Cox-de Boor-Mansfield recurrence relation][eq-basis-function] |
| 9 | +//! |
| 10 | +//! with the basis functions of degree `p = 0` |
| 11 | +//! |
| 12 | +//! ![Basis function of degree zero][eq-basis-function-zero] |
| 13 | +//! |
| 14 | +//! where the conditional `⋁ (i = n - k ⋀ u = U_{n+1-k)` closes the last interval |
| 15 | +//! and the pre-factors |
| 16 | +//! |
| 17 | +//! ![Pre-factors][eq-basis-prefactor] |
| 18 | +
|
| 19 | +use crate::types::VecD; |
| 20 | + |
| 21 | +/// Evaluates the `i`-th basis spline function of degree `p` |
| 22 | +/// |
| 23 | +/// ## Arguments |
| 24 | +/// |
| 25 | +/// - `i` the index with `i ∈ {0, 1, ..., n}` |
| 26 | +/// - `p` the spline degree |
| 27 | +/// - `k` the derivative order |
| 28 | +/// - `U` the knot vector |
| 29 | +pub fn basis(Uk: &VecD, i: usize, p: usize, k: usize, n: usize, u: f64) -> f64 { |
| 30 | + if p == 0 { |
| 31 | + if (Uk[i] <= u && u < Uk[i + 1]) || (i == n - k && u == Uk[n + 1 - k]) { |
| 32 | + return 1.0; |
| 33 | + } |
| 34 | + return 0.0; |
| 35 | + } |
| 36 | + |
| 37 | + let summand1 = if Uk[i + p] == Uk[i] { |
| 38 | + 0.0 |
| 39 | + } else { |
| 40 | + let g = i; |
| 41 | + let h = p - 1; |
| 42 | + (u - Uk[g]) / (Uk[g + h + 1] - Uk[g]) * basis(Uk, i, h, k, n, u) |
| 43 | + }; |
| 44 | + |
| 45 | + let summand2 = if Uk[i + 1 + p] == Uk[i + 1] { |
| 46 | + 0.0 |
| 47 | + } else { |
| 48 | + let g = i + 1; |
| 49 | + let h = p - 1; |
| 50 | + |
| 51 | + // The following equation is numerically more stable than |
| 52 | + // `(1.0 - ((u - Uk[g]) / (Uk[g + h + 1] - Uk[g]))) * self.evaluate(k, g, h, u)` |
| 53 | + (Uk[g + p] - u) / (Uk[g + h + 1] - Uk[g]) * basis(Uk, g, h, k, n, u) |
| 54 | + }; |
| 55 | + |
| 56 | + summand1 + summand2 |
| 57 | +} |
| 58 | + |
| 59 | +#[cfg(test)] |
| 60 | +mod tests { |
| 61 | + use approx::assert_relative_eq; |
| 62 | + use nalgebra::dvector; |
| 63 | + |
| 64 | + use crate::curve::knots::Knots; |
| 65 | + |
| 66 | + const SEGMENTS: usize = 4; |
| 67 | + |
| 68 | + #[test] |
| 69 | + fn basis_func_degree3() { |
| 70 | + let k = 0; |
| 71 | + let p = 3; |
| 72 | + let knots = Knots::new(p, dvector![0., 0., 0., 0., 1. / 3., 2. / 3., 1., 1., 1., 1.]); |
| 73 | + |
| 74 | + // Basis function i = 0 |
| 75 | + let mut i = 0; |
| 76 | + assert_eq!(knots.evaluate(k, i, p, 0.0), 1.0); |
| 77 | + assert_eq!(knots.evaluate(k, i, p, 1. / 6.), 1. / 8.); |
| 78 | + assert_eq!(knots.evaluate(k, i, p, 1. / 3.), 0.0); |
| 79 | + assert_eq!(knots.evaluate(k, i, p, 1. / 2.), 0.0); |
| 80 | + assert_eq!(knots.evaluate(k, i, p, 2. / 3.), 0.0); |
| 81 | + assert_eq!(knots.evaluate(k, i, p, 5. / 6.), 0.0); |
| 82 | + assert_eq!(knots.evaluate(k, i, p, 1.), 0.0); |
| 83 | + |
| 84 | + i = 1; |
| 85 | + assert_eq!(knots.evaluate(k, i, p, 0.), 0.0); |
| 86 | + assert_eq!(knots.evaluate(k, i, p, 1. / 6.), 19. / 32.); |
| 87 | + assert_eq!(knots.evaluate(k, i, p, 1. / 3.), 1. / 4.); |
| 88 | + assert_relative_eq!(knots.evaluate(k, i, p, 1. / 2.), 1. / 32., epsilon = f64::EPSILON.sqrt()); |
| 89 | + assert_eq!(knots.evaluate(k, i, p, 2. / 3.), 0.0); |
| 90 | + assert_eq!(knots.evaluate(k, i, p, 5. / 6.), 0.0); |
| 91 | + assert_eq!(knots.evaluate(k, i, p, 1.), 0.0); |
| 92 | + |
| 93 | + i = 2; |
| 94 | + assert_eq!(knots.evaluate(k, i, p, 0.), 0.0); |
| 95 | + assert_eq!(knots.evaluate(k, i, p, 1. / 6.), 25. / 96.); |
| 96 | + assert_eq!(knots.evaluate(k, i, p, 1. / 3.), 7. / 12.); |
| 97 | + assert_relative_eq!(knots.evaluate(k, i, p, 1. / 2.), 15. / 32., epsilon = f64::EPSILON.sqrt()); |
| 98 | + assert_relative_eq!(knots.evaluate(k, i, p, 2. / 3.), 1. / 6., epsilon = f64::EPSILON.sqrt()); |
| 99 | + assert_relative_eq!(knots.evaluate(k, i, p, 5. / 6.), 1. / 48., epsilon = f64::EPSILON.sqrt()); |
| 100 | + assert_eq!(knots.evaluate(k, i, p, 1.0), 0.0); |
| 101 | + |
| 102 | + i = 3; |
| 103 | + assert_eq!(knots.evaluate(k, i, p, 0.), 0.0); |
| 104 | + assert_eq!(knots.evaluate(k, i, p, 1. / 6.), 1. / 48.); |
| 105 | + assert_eq!(knots.evaluate(k, i, p, 1. / 3.), 1. / 6.); |
| 106 | + assert_relative_eq!(knots.evaluate(k, i, p, 1. / 2.), 15. / 32., epsilon = f64::EPSILON.sqrt()); |
| 107 | + assert_relative_eq!(knots.evaluate(k, i, p, 2. / 3.), 7. / 12., epsilon = f64::EPSILON.sqrt()); |
| 108 | + assert_relative_eq!(knots.evaluate(k, i, p, 5. / 6.), 25. / 96., epsilon = f64::EPSILON.sqrt()); |
| 109 | + assert_eq!(knots.evaluate(k, i, p, 1.0), 0.0); |
| 110 | + |
| 111 | + i = 4; |
| 112 | + assert_eq!(knots.evaluate(k, i, p, 0.), 0.0); |
| 113 | + assert_eq!(knots.evaluate(k, i, p, 1. / 6.), 0.0); |
| 114 | + assert_eq!(knots.evaluate(k, i, p, 1. / 3.), 0.0); |
| 115 | + assert_relative_eq!(knots.evaluate(k, i, p, 1. / 2.), 1. / 32., epsilon = f64::EPSILON.sqrt()); |
| 116 | + assert_relative_eq!(knots.evaluate(k, i, p, 2. / 3.), 1. / 4., epsilon = f64::EPSILON.sqrt()); |
| 117 | + assert_relative_eq!(knots.evaluate(k, i, p, 5. / 6.), 19. / 32., epsilon = f64::EPSILON.sqrt()); |
| 118 | + assert_eq!(knots.evaluate(k, i, p, 1.0), 0.0); |
| 119 | + |
| 120 | + i = 5; |
| 121 | + assert_eq!(knots.evaluate(k, i, p, 0.0), 0.0); |
| 122 | + assert_eq!(knots.evaluate(k, i, p, 1. / 6.), 0.); |
| 123 | + assert_eq!(knots.evaluate(k, i, p, 1. / 3.), 0.0); |
| 124 | + assert_eq!(knots.evaluate(k, i, p, 1. / 2.), 0.0); |
| 125 | + assert_eq!(knots.evaluate(k, i, p, 2. / 3.), 0.0); |
| 126 | + assert_relative_eq!(knots.evaluate(k, i, p, 5. / 6.), 1. / 8., epsilon = f64::EPSILON.sqrt()); |
| 127 | + assert_eq!(knots.evaluate(k, i, p, 1.), 1.0); |
| 128 | + } |
| 129 | + |
| 130 | + #[test] |
| 131 | + fn basis_func_degree4() { |
| 132 | + let k = 1; |
| 133 | + let p = 4; |
| 134 | + let knots = Knots::new(p, dvector![0., 0., 0., 0., 0., 1. / 3., 2. / 3., 1., 1., 1., 1., 1.]); |
| 135 | + |
| 136 | + // Basis function i = 0 |
| 137 | + let mut i = 0; |
| 138 | + assert_eq!(knots.evaluate(k, i, p, 0.0), 1.0); |
| 139 | + assert_eq!(knots.evaluate(k, i, p, 1. / 6.), 1. / 8.); |
| 140 | + assert_eq!(knots.evaluate(k, i, p, 1. / 3.), 0.0); |
| 141 | + assert_eq!(knots.evaluate(k, i, p, 1. / 2.), 0.0); |
| 142 | + assert_eq!(knots.evaluate(k, i, p, 2. / 3.), 0.0); |
| 143 | + assert_eq!(knots.evaluate(k, i, p, 5. / 6.), 0.0); |
| 144 | + assert_eq!(knots.evaluate(k, i, p, 1.), 0.0); |
| 145 | + |
| 146 | + i = 1; |
| 147 | + assert_eq!(knots.evaluate(k, i, p, 0.), 0.0); |
| 148 | + assert_eq!(knots.evaluate(k, i, p, 1. / 6.), 19. / 32.); |
| 149 | + assert_eq!(knots.evaluate(k, i, p, 1. / 3.), 1. / 4.); |
| 150 | + assert_relative_eq!(knots.evaluate(k, i, p, 1. / 2.), 1. / 32., epsilon = f64::EPSILON.sqrt()); |
| 151 | + assert_eq!(knots.evaluate(k, i, p, 2. / 3.), 0.0); |
| 152 | + assert_eq!(knots.evaluate(k, i, p, 5. / 6.), 0.0); |
| 153 | + assert_eq!(knots.evaluate(k, i, p, 1.), 0.0); |
| 154 | + |
| 155 | + i = 2; |
| 156 | + assert_eq!(knots.evaluate(k, i, p, 0.), 0.0); |
| 157 | + assert_eq!(knots.evaluate(k, i, p, 1. / 6.), 25. / 96.); |
| 158 | + assert_eq!(knots.evaluate(k, i, p, 1. / 3.), 7. / 12.); |
| 159 | + assert_relative_eq!(knots.evaluate(k, i, p, 1. / 2.), 15. / 32., epsilon = f64::EPSILON.sqrt()); |
| 160 | + assert_relative_eq!(knots.evaluate(k, i, p, 2. / 3.), 1. / 6., epsilon = f64::EPSILON.sqrt()); |
| 161 | + assert_relative_eq!(knots.evaluate(k, i, p, 5. / 6.), 1. / 48., epsilon = f64::EPSILON.sqrt()); |
| 162 | + assert_eq!(knots.evaluate(k, i, p, 1.0), 0.0); |
| 163 | + |
| 164 | + i = 3; |
| 165 | + assert_eq!(knots.evaluate(k, i, p, 0.), 0.0); |
| 166 | + assert_eq!(knots.evaluate(k, i, p, 1. / 6.), 1. / 48.); |
| 167 | + assert_eq!(knots.evaluate(k, i, p, 1. / 3.), 1. / 6.); |
| 168 | + assert_relative_eq!(knots.evaluate(k, i, p, 1. / 2.), 15. / 32., epsilon = f64::EPSILON.sqrt()); |
| 169 | + assert_relative_eq!(knots.evaluate(k, i, p, 2. / 3.), 7. / 12., epsilon = f64::EPSILON.sqrt()); |
| 170 | + assert_relative_eq!(knots.evaluate(k, i, p, 5. / 6.), 25. / 96., epsilon = f64::EPSILON.sqrt()); |
| 171 | + assert_eq!(knots.evaluate(k, i, p, 1.0), 0.0); |
| 172 | + |
| 173 | + i = 4; |
| 174 | + assert_eq!(knots.evaluate(k, i, p, 0.), 0.0); |
| 175 | + assert_eq!(knots.evaluate(k, i, p, 1. / 6.), 0.0); |
| 176 | + assert_eq!(knots.evaluate(k, i, p, 1. / 3.), 0.0); |
| 177 | + assert_relative_eq!(knots.evaluate(k, i, p, 1. / 2.), 1. / 32., epsilon = f64::EPSILON.sqrt()); |
| 178 | + assert_relative_eq!(knots.evaluate(k, i, p, 2. / 3.), 1. / 4., epsilon = f64::EPSILON.sqrt()); |
| 179 | + assert_relative_eq!(knots.evaluate(k, i, p, 5. / 6.), 19. / 32., epsilon = f64::EPSILON.sqrt()); |
| 180 | + assert_eq!(knots.evaluate(k, i, p, 1.0), 0.0); |
| 181 | + |
| 182 | + i = 5; |
| 183 | + assert_eq!(knots.evaluate(k, i, p, 0.0), 0.0); |
| 184 | + assert_eq!(knots.evaluate(k, i, p, 1. / 6.), 0.); |
| 185 | + assert_eq!(knots.evaluate(k, i, p, 1. / 3.), 0.0); |
| 186 | + assert_eq!(knots.evaluate(k, i, p, 1. / 2.), 0.0); |
| 187 | + assert_eq!(knots.evaluate(k, i, p, 2. / 3.), 0.0); |
| 188 | + assert_relative_eq!(knots.evaluate(k, i, p, 5. / 6.), 1. / 8., epsilon = f64::EPSILON.sqrt()); |
| 189 | + assert_eq!(knots.evaluate(k, i, p, 1.), 1.0); |
| 190 | + } |
| 191 | +} |
0 commit comments