-
Notifications
You must be signed in to change notification settings - Fork 1
/
spirv_cfg.cpp
430 lines (377 loc) · 14.8 KB
/
spirv_cfg.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
/*
* Copyright 2016-2021 Arm Limited
* SPDX-License-Identifier: Apache-2.0 OR MIT
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* At your option, you may choose to accept this material under either:
* 1. The Apache License, Version 2.0, found at <http://www.apache.org/licenses/LICENSE-2.0>, or
* 2. The MIT License, found at <http://opensource.org/licenses/MIT>.
*/
#include "spirv_cfg.hpp"
#include "spirv_cross.hpp"
#include <algorithm>
#include <assert.h>
using namespace std;
namespace SPIRV_CROSS_NAMESPACE
{
CFG::CFG(Compiler &compiler_, const SPIRFunction &func_)
: compiler(compiler_)
, func(func_)
{
build_post_order_visit_order();
build_immediate_dominators();
}
uint32_t CFG::find_common_dominator(uint32_t a, uint32_t b) const
{
while (a != b)
{
if (get_visit_order(a) < get_visit_order(b))
a = get_immediate_dominator(a);
else
b = get_immediate_dominator(b);
}
return a;
}
void CFG::build_immediate_dominators()
{
// Traverse the post-order in reverse and build up the immediate dominator tree.
immediate_dominators.clear();
immediate_dominators[func.entry_block] = func.entry_block;
for (auto i = post_order.size(); i; i--)
{
uint32_t block = post_order[i - 1];
auto &pred = preceding_edges[block];
if (pred.empty()) // This is for the entry block, but we've already set up the dominators.
continue;
for (auto &edge : pred)
{
if (immediate_dominators[block])
{
assert(immediate_dominators[edge]);
immediate_dominators[block] = find_common_dominator(immediate_dominators[block], edge);
}
else
immediate_dominators[block] = edge;
}
}
}
bool CFG::is_back_edge(uint32_t to) const
{
// We have a back edge if the visit order is set with the temporary magic value 0.
// Crossing edges will have already been recorded with a visit order.
auto itr = visit_order.find(to);
return itr != end(visit_order) && itr->second.get() == 0;
}
bool CFG::has_visited_forward_edge(uint32_t to) const
{
// If > 0, we have visited the edge already, and this is not a back edge branch.
auto itr = visit_order.find(to);
return itr != end(visit_order) && itr->second.get() > 0;
}
bool CFG::post_order_visit(uint32_t block_id)
{
// If we have already branched to this block (back edge), stop recursion.
// If our branches are back-edges, we do not record them.
// We have to record crossing edges however.
if (has_visited_forward_edge(block_id))
return true;
else if (is_back_edge(block_id))
return false;
// Block back-edges from recursively revisiting ourselves.
visit_order[block_id].get() = 0;
auto &block = compiler.get<SPIRBlock>(block_id);
// If this is a loop header, add an implied branch to the merge target.
// This is needed to avoid annoying cases with do { ... } while(false) loops often generated by inliners.
// To the CFG, this is linear control flow, but we risk picking the do/while scope as our dominating block.
// This makes sure that if we are accessing a variable outside the do/while, we choose the loop header as dominator.
// We could use has_visited_forward_edge, but this break code-gen where the merge block is unreachable in the CFG.
// Make a point out of visiting merge target first. This is to make sure that post visit order outside the loop
// is lower than inside the loop, which is going to be key for some traversal algorithms like post-dominance analysis.
// For selection constructs true/false blocks will end up visiting the merge block directly and it works out fine,
// but for loops, only the header might end up actually branching to merge block.
if (block.merge == SPIRBlock::MergeLoop && post_order_visit(block.merge_block))
add_branch(block_id, block.merge_block);
// First visit our branch targets.
switch (block.terminator)
{
case SPIRBlock::Direct:
if (post_order_visit(block.next_block))
add_branch(block_id, block.next_block);
break;
case SPIRBlock::Select:
if (post_order_visit(block.true_block))
add_branch(block_id, block.true_block);
if (post_order_visit(block.false_block))
add_branch(block_id, block.false_block);
break;
case SPIRBlock::MultiSelect:
{
const auto &cases = compiler.get_case_list(block);
for (const auto &target : cases)
{
if (post_order_visit(target.block))
add_branch(block_id, target.block);
}
if (block.default_block && post_order_visit(block.default_block))
add_branch(block_id, block.default_block);
break;
}
default:
break;
}
// If this is a selection merge, add an implied branch to the merge target.
// This is needed to avoid cases where an inner branch dominates the outer branch.
// This can happen if one of the branches exit early, e.g.:
// if (cond) { ...; break; } else { var = 100 } use_var(var);
// We can use the variable without a Phi since there is only one possible parent here.
// However, in this case, we need to hoist out the inner variable to outside the branch.
// Use same strategy as loops.
if (block.merge == SPIRBlock::MergeSelection && post_order_visit(block.next_block))
{
// If there is only one preceding edge to the merge block and it's not ourselves, we need a fixup.
// Add a fake branch so any dominator in either the if (), or else () block, or a lone case statement
// will be hoisted out to outside the selection merge.
// If size > 1, the variable will be automatically hoisted, so we should not mess with it.
// The exception here is switch blocks, where we can have multiple edges to merge block,
// all coming from same scope, so be more conservative in this case.
// Adding fake branches unconditionally breaks parameter preservation analysis,
// which looks at how variables are accessed through the CFG.
auto pred_itr = preceding_edges.find(block.next_block);
if (pred_itr != end(preceding_edges))
{
auto &pred = pred_itr->second;
auto succ_itr = succeeding_edges.find(block_id);
size_t num_succeeding_edges = 0;
if (succ_itr != end(succeeding_edges))
num_succeeding_edges = succ_itr->second.size();
if (block.terminator == SPIRBlock::MultiSelect && num_succeeding_edges == 1)
{
// Multiple branches can come from the same scope due to "break;", so we need to assume that all branches
// come from same case scope in worst case, even if there are multiple preceding edges.
// If we have more than one succeeding edge from the block header, it should be impossible
// to have a dominator be inside the block.
// Only case this can go wrong is if we have 2 or more edges from block header and
// 2 or more edges to merge block, and still have dominator be inside a case label.
if (!pred.empty())
add_branch(block_id, block.next_block);
}
else
{
if (pred.size() == 1 && *pred.begin() != block_id)
add_branch(block_id, block.next_block);
}
}
else
{
// If the merge block does not have any preceding edges, i.e. unreachable, hallucinate it.
// We're going to do code-gen for it, and domination analysis requires that we have at least one preceding edge.
add_branch(block_id, block.next_block);
}
}
// Then visit ourselves. Start counting at one, to let 0 be a magic value for testing back vs. crossing edges.
visit_order[block_id].get() = ++visit_count;
post_order.push_back(block_id);
return true;
}
void CFG::build_post_order_visit_order()
{
uint32_t block = func.entry_block;
visit_count = 0;
visit_order.clear();
post_order.clear();
post_order_visit(block);
}
void CFG::add_branch(uint32_t from, uint32_t to)
{
const auto add_unique = [](SmallVector<uint32_t> &l, uint32_t value) {
auto itr = find(begin(l), end(l), value);
if (itr == end(l))
l.push_back(value);
};
add_unique(preceding_edges[to], from);
add_unique(succeeding_edges[from], to);
}
uint32_t CFG::find_loop_dominator(uint32_t block_id) const
{
while (block_id != SPIRBlock::NoDominator)
{
auto itr = preceding_edges.find(block_id);
if (itr == end(preceding_edges))
return SPIRBlock::NoDominator;
if (itr->second.empty())
return SPIRBlock::NoDominator;
uint32_t pred_block_id = SPIRBlock::NoDominator;
bool ignore_loop_header = false;
// If we are a merge block, go directly to the header block.
// Only consider a loop dominator if we are branching from inside a block to a loop header.
// NOTE: In the CFG we forced an edge from header to merge block always to support variable scopes properly.
for (auto &pred : itr->second)
{
auto &pred_block = compiler.get<SPIRBlock>(pred);
if (pred_block.merge == SPIRBlock::MergeLoop && pred_block.merge_block == ID(block_id))
{
pred_block_id = pred;
ignore_loop_header = true;
break;
}
else if (pred_block.merge == SPIRBlock::MergeSelection && pred_block.next_block == ID(block_id))
{
pred_block_id = pred;
break;
}
}
// No merge block means we can just pick any edge. Loop headers dominate the inner loop, so any path we
// take will lead there.
if (pred_block_id == SPIRBlock::NoDominator)
pred_block_id = itr->second.front();
block_id = pred_block_id;
if (!ignore_loop_header && block_id)
{
auto &block = compiler.get<SPIRBlock>(block_id);
if (block.merge == SPIRBlock::MergeLoop)
return block_id;
}
}
return block_id;
}
bool CFG::node_terminates_control_flow_in_sub_graph(BlockID from, BlockID to) const
{
// Walk backwards, starting from "to" block.
// Only follow pred edges if they have a 1:1 relationship, or a merge relationship.
// If we cannot find a path to "from", we must assume that to is inside control flow in some way.
auto &from_block = compiler.get<SPIRBlock>(from);
BlockID ignore_block_id = 0;
if (from_block.merge == SPIRBlock::MergeLoop)
ignore_block_id = from_block.merge_block;
while (to != from)
{
auto pred_itr = preceding_edges.find(to);
if (pred_itr == end(preceding_edges))
return false;
DominatorBuilder builder(*this);
for (auto &edge : pred_itr->second)
builder.add_block(edge);
uint32_t dominator = builder.get_dominator();
if (dominator == 0)
return false;
auto &dom = compiler.get<SPIRBlock>(dominator);
bool true_path_ignore = false;
bool false_path_ignore = false;
bool merges_to_nothing = dom.merge == SPIRBlock::MergeNone ||
(dom.merge == SPIRBlock::MergeSelection && dom.next_block &&
compiler.get<SPIRBlock>(dom.next_block).terminator == SPIRBlock::Unreachable) ||
(dom.merge == SPIRBlock::MergeLoop && dom.merge_block &&
compiler.get<SPIRBlock>(dom.merge_block).terminator == SPIRBlock::Unreachable);
if (dom.self == from || merges_to_nothing)
{
// We can only ignore inner branchy paths if there is no merge,
// i.e. no code is generated afterwards. E.g. this allows us to elide continue:
// for (;;) { if (cond) { continue; } else { break; } }.
// Codegen here in SPIR-V will be something like either no merge if one path directly breaks, or
// we merge to Unreachable.
if (ignore_block_id && dom.terminator == SPIRBlock::Select)
{
auto &true_block = compiler.get<SPIRBlock>(dom.true_block);
auto &false_block = compiler.get<SPIRBlock>(dom.false_block);
auto &ignore_block = compiler.get<SPIRBlock>(ignore_block_id);
true_path_ignore = compiler.execution_is_branchless(true_block, ignore_block);
false_path_ignore = compiler.execution_is_branchless(false_block, ignore_block);
}
}
// Cases where we allow traversal. This serves as a proxy for post-dominance in a loop body.
// TODO: Might want to do full post-dominance analysis, but it's a lot of churn for something like this ...
// - We're the merge block of a selection construct. Jump to header.
// - We're the merge block of a loop. Jump to header.
// - Direct branch. Trivial.
// - Allow cases inside a branch if the header cannot merge execution before loop exit.
if ((dom.merge == SPIRBlock::MergeSelection && dom.next_block == to) ||
(dom.merge == SPIRBlock::MergeLoop && dom.merge_block == to) ||
(dom.terminator == SPIRBlock::Direct && dom.next_block == to) ||
(dom.terminator == SPIRBlock::Select && dom.true_block == to && false_path_ignore) ||
(dom.terminator == SPIRBlock::Select && dom.false_block == to && true_path_ignore))
{
// Allow walking selection constructs if the other branch reaches out of a loop construct.
// It cannot be in-scope anymore.
to = dominator;
}
else
return false;
}
return true;
}
DominatorBuilder::DominatorBuilder(const CFG &cfg_)
: cfg(cfg_)
{
}
void DominatorBuilder::add_block(uint32_t block)
{
if (!cfg.get_immediate_dominator(block))
{
// Unreachable block via the CFG, we will never emit this code anyways.
return;
}
if (!dominator)
{
dominator = block;
return;
}
if (block != dominator)
dominator = cfg.find_common_dominator(block, dominator);
}
void DominatorBuilder::lift_continue_block_dominator()
{
// It is possible for a continue block to be the dominator of a variable is only accessed inside the while block of a do-while loop.
// We cannot safely declare variables inside a continue block, so move any variable declared
// in a continue block to the entry block to simplify.
// It makes very little sense for a continue block to ever be a dominator, so fall back to the simplest
// solution.
if (!dominator)
return;
auto &block = cfg.get_compiler().get<SPIRBlock>(dominator);
auto post_order = cfg.get_visit_order(dominator);
// If we are branching to a block with a higher post-order traversal index (continue blocks), we have a problem
// since we cannot create sensible GLSL code for this, fallback to entry block.
bool back_edge_dominator = false;
switch (block.terminator)
{
case SPIRBlock::Direct:
if (cfg.get_visit_order(block.next_block) > post_order)
back_edge_dominator = true;
break;
case SPIRBlock::Select:
if (cfg.get_visit_order(block.true_block) > post_order)
back_edge_dominator = true;
if (cfg.get_visit_order(block.false_block) > post_order)
back_edge_dominator = true;
break;
case SPIRBlock::MultiSelect:
{
auto &cases = cfg.get_compiler().get_case_list(block);
for (auto &target : cases)
{
if (cfg.get_visit_order(target.block) > post_order)
back_edge_dominator = true;
}
if (block.default_block && cfg.get_visit_order(block.default_block) > post_order)
back_edge_dominator = true;
break;
}
default:
break;
}
if (back_edge_dominator)
dominator = cfg.get_function().entry_block;
}
} // namespace SPIRV_CROSS_NAMESPACE