Skip to content

Latest commit

 

History

History
74 lines (59 loc) · 2.35 KB

README.md

File metadata and controls

74 lines (59 loc) · 2.35 KB

YOLO-Pruning-RKNN

Easy Training Official YOLOv8、YOLOv7、YOLOv6、YOLOv5、RT-DETR、Prune all_model using Torch-Pruning and Export RKNN Supported models!

We implemented YOLOv7 anchor free like YOLOv8!

We replaced the YOLOv8's operations that are not supported by the rknn NPU with operations that can be loaded on the NPU, all without altering the original structure of YOLOv8.

We implemented pruning of the YOLO model using torch-pruning.

You can reduce the number of parameters by 75% without losing any accuracy!

New parameters:

prune: False(default):(bool) Whether to use torch-pruning 
prune_ratio: 0.66874(default):(float) Expected model pruning rate
prune_iterative_steps: 1(default):(int) Number of iteration rounds of pruning
prune_load: False(default):(bool) Whether to load weights after pruning

New model:

yolov7.yaml

You can use this code like ultralytics for yolov8 ,and see the YOLOv8 Docs for full documentation on training, validation, prediction and deployment.

Quickstart

pip install torch-pruning 
pip install -r requirements.txt

Train and prune

training example for yolov7

You can see train.py

from ultralytics import YOLO
model = YOLO('yolov7m.yaml')
results = model.train(data='coco.yaml', epochs=100, imgsz=640, batch=64, device=[0,1,2,3],name='yolov7')

pruning example for yolov8m

You can see prune.py

from ultralytics import YOLO
model = YOLO('yolov8m.yaml')
results = model.train(data='coco.yaml', epochs=100, imgsz=640, batch=64, device=[0,1,2,3],name='yolov8_pruning',\
                      prune=True,prune_ratio=0.66874,prune_iterative_steps=1)

Export

export example for rknn

You can see export.py,We support exporting the model to onnx supported by rknn npu.

from ultralytics import YOLO
model = YOLO('./yolov8m.pt')
model.export(format='rknn')

Predict

You can predict model like ultralytics.You can see infer.py.More details see the Predict page

from ultralytics import YOLO
model = YOLO('yolov8n.pt') # model = YOLO('prune.pt')
model.predict('ultralytics/assets/bus.jpg',save=True,device=[0],line_width=2)

Calculate model parameters

pip install thop

You can calculate model parameters and flops by using calculate.py