Skip to content

Latest commit

 

History

History
546 lines (414 loc) · 14.3 KB

python.html.markdown

File metadata and controls

546 lines (414 loc) · 14.3 KB
language contributors filename
python
Louie Dinh
Amin Bandali
learnpython.py

Python was created by Guido Van Rossum in the early 90's. It is now one of the most popular languages in existence. I fell in love with Python for its syntactic clarity. It's basically executable pseudocode.

Feedback would be highly appreciated! You can reach me at @louiedinh or louiedinh [at] [google's email service]

Note: This article applies to Python 2.7 specifically, but should be applicable to Python 2.x. Look for another tour of Python 3 soon!

# Single line comments start with a hash.
""" Multiline strings can be written
    using three "'s, and are often used
    as comments
"""

####################################################
## 1. Primitive Datatypes and Operators
####################################################

# You have numbers
3 #=> 3

# Math is what you would expect
1 + 1 #=> 2
8 - 1 #=> 7
10 * 2 #=> 20
35 / 5 #=> 7

# Division is a bit tricky. It is integer division and floors the results
# automatically.
5 / 2 #=> 2

# To fix division we need to learn about floats.
2.0     # This is a float
11.0 / 4.0 #=> 2.75 ahhh...much better

# Enforce precedence with parentheses
(1 + 3) * 2 #=> 8

# Boolean values are primitives
True
False

# negate with not
not True #=> False
not False #=> True

# Equality is ==
1 == 1 #=> True
2 == 1 #=> False

# Inequality is !=
1 != 1 #=> False
2 != 1 #=> True

# More comparisons
1 < 10 #=> True
1 > 10 #=> False
2 <= 2 #=> True
2 >= 2 #=> True

# Comparisons can be chained!
1 < 2 < 3 #=> True
2 < 3 < 2 #=> False

# Strings are created with " or '
"This is a string."
'This is also a string.'

# Strings can be added too!
"Hello " + "world!" #=> "Hello world!"

# A string can be treated like a list of characters
"This is a string"[0] #=> 'T'

# % can be used to format strings, like this:
"%s can be %s" % ("strings", "interpolated")

# A newer way to format strings is the format method.
# This method is the preferred way
"{0} can be {1}".format("strings", "formatted")
# You can use keywords if you don't want to count.
"{name} wants to eat {food}".format(name="Bob", food="lasagna")

# None is an object
None #=> None

# Don't use the equality "==" symbol to compare objects to None
# Use "is" instead
"etc" is None #=> False
None is None  #=> True

# The 'is' operator tests for object identity. This isn't
# very useful when dealing with primitive values, but is
# very useful when dealing with objects.

# None, 0, and empty strings/lists all evaluate to False.
# All other values are True
bool(0)  #=> False
bool("") #=> False


####################################################
## 2. Variables and Collections
####################################################

# Python has a print function, available in versions 2.7 and 3...
print("I'm Python. Nice to meet you!")
# and an older print statement, in all 2.x versions but removed from 3.
print "I'm also Python!"


# No need to declare variables before assigning to them.
some_var = 5    # Convention is to use lower_case_with_underscores
some_var #=> 5

# Accessing a previously unassigned variable is an exception.
# See Control Flow to learn more about exception handling.
some_other_var  # Raises a name error

# if can be used as an expression
"yahoo!" if 3 > 2 else 2 #=> "yahoo!"

# Lists store sequences
li = []
# You can start with a prefilled list
other_li = [4, 5, 6]

# Add stuff to the end of a list with append
li.append(1)    #li is now [1]
li.append(2)    #li is now [1, 2]
li.append(4)    #li is now [1, 2, 4]
li.append(3)    #li is now [1, 2, 4, 3]
# Remove from the end with pop
li.pop()        #=> 3 and li is now [1, 2, 4]
# Let's put it back
li.append(3)    # li is now [1, 2, 4, 3] again.

# Access a list like you would any array
li[0] #=> 1
# Look at the last element
li[-1] #=> 3

# Looking out of bounds is an IndexError
li[4] # Raises an IndexError

# You can look at ranges with slice syntax.
# (It's a closed/open range for you mathy types.)
li[1:3] #=> [2, 4]
# Omit the beginning
li[2:] #=> [4, 3]
# Omit the end
li[:3] #=> [1, 2, 4]
# Select every second entry
li[::2] #=>[1,4]
# Revert the list
li[::-1] #=> [3, 4, 2, 1]
# Use any combination of these to make advanced slices
# li[start:end:step]

# Remove arbitrary elements from a list with "del"
del li[2] # li is now [1, 2, 3]

# You can add lists
li + other_li #=> [1, 2, 3, 4, 5, 6] - Note: li and other_li is left alone

# Concatenate lists with "extend()"
li.extend(other_li) # Now li is [1, 2, 3, 4, 5, 6]

# Check for existence in a list with "in"
1 in li #=> True

# Examine the length with "len()"
len(li) #=> 6


# Tuples are like lists but are immutable.
tup = (1, 2, 3)
tup[0] #=> 1
tup[0] = 3  # Raises a TypeError

# You can do all those list thingies on tuples too
len(tup) #=> 3
tup + (4, 5, 6) #=> (1, 2, 3, 4, 5, 6)
tup[:2] #=> (1, 2)
2 in tup #=> True

# You can unpack tuples (or lists) into variables
a, b, c = (1, 2, 3)     # a is now 1, b is now 2 and c is now 3
# Tuples are created by default if you leave out the parentheses
d, e, f = 4, 5, 6
# Now look how easy it is to swap two values
e, d = d, e     # d is now 5 and e is now 4


# Dictionaries store mappings
empty_dict = {}
# Here is a prefilled dictionary
filled_dict = {"one": 1, "two": 2, "three": 3}

# Look up values with []
filled_dict["one"] #=> 1

# Get all keys as a list with "keys()"
filled_dict.keys() #=> ["three", "two", "one"]
# Note - Dictionary key ordering is not guaranteed.
# Your results might not match this exactly.

# Get all values as a list with "values()"
filled_dict.values() #=> [3, 2, 1]
# Note - Same as above regarding key ordering.

# Check for existence of keys in a dictionary with "in"
"one" in filled_dict #=> True
1 in filled_dict #=> False

# Looking up a non-existing key is a KeyError
filled_dict["four"] # KeyError

# Use "get()" method to avoid the KeyError
filled_dict.get("one") #=> 1
filled_dict.get("four") #=> None
# The get method supports a default argument when the value is missing
filled_dict.get("one", 4) #=> 1
filled_dict.get("four", 4) #=> 4

# "setdefault()" inserts into a dictionary only if the given key isn't present
filled_dict.setdefault("five", 5) #filled_dict["five"] is set to 5
filled_dict.setdefault("five", 6) #filled_dict["five"] is still 5


# Sets store ... well sets
empty_set = set()
# Initialize a "set()" with a bunch of values
some_set = set([1,2,2,3,4]) # some_set is now set([1, 2, 3, 4])

# Since Python 2.7, {} can be used to declare a set
filled_set = {1, 2, 2, 3, 4} # => {1, 2, 3, 4}

# Add more items to a set
filled_set.add(5) # filled_set is now {1, 2, 3, 4, 5}

# Do set intersection with &
other_set = {3, 4, 5, 6}
filled_set & other_set #=> {3, 4, 5}

# Do set union with |
filled_set | other_set #=> {1, 2, 3, 4, 5, 6}

# Do set difference with -
{1,2,3,4} - {2,3,5} #=> {1, 4}

# Check for existence in a set with in
2 in filled_set #=> True
10 in filled_set #=> False


####################################################
## 3. Control Flow
####################################################

# Let's just make a variable
some_var = 5

# Here is an if statement. Indentation is significant in python!
# prints "some_var is smaller than 10"
if some_var > 10:
    print("some_var is totally bigger than 10.")
elif some_var < 10:    # This elif clause is optional.
    print("some_var is smaller than 10.")
else:           # This is optional too.
    print("some_var is indeed 10.")


"""
For loops iterate over lists
prints:
    dog is a mammal
    cat is a mammal
    mouse is a mammal
"""
for animal in ["dog", "cat", "mouse"]:
    # You can use % to interpolate formatted strings
    print("%s is a mammal" % animal)

"""
"range(number)" returns a list of numbers
from zero to the given number
prints:
    0
    1
    2
    3
"""
for i in range(4):
    print(i)

"""
While loops go until a condition is no longer met.
prints:
    0
    1
    2
    3
"""
x = 0
while x < 4:
    print(x)
    x += 1  # Shorthand for x = x + 1

# Handle exceptions with a try/except block

# Works on Python 2.6 and up:
try:
    # Use "raise" to raise an error
    raise IndexError("This is an index error")
except IndexError as e:
    pass    # Pass is just a no-op. Usually you would do recovery here.


####################################################
## 4. Functions
####################################################

# Use "def" to create new functions
def add(x, y):
    print("x is %s and y is %s" % (x, y))
    return x + y    # Return values with a return statement

# Calling functions with parameters
add(5, 6) #=> prints out "x is 5 and y is 6" and returns 11

# Another way to call functions is with keyword arguments
add(y=6, x=5)   # Keyword arguments can arrive in any order.

# You can define functions that take a variable number of
# positional arguments
def varargs(*args):
    return args

varargs(1, 2, 3) #=> (1,2,3)


# You can define functions that take a variable number of
# keyword arguments, as well
def keyword_args(**kwargs):
    return kwargs

# Let's call it to see what happens
keyword_args(big="foot", loch="ness") #=> {"big": "foot", "loch": "ness"}

# You can do both at once, if you like
def all_the_args(*args, **kwargs):
    print(args)
    print(kwargs)
"""
all_the_args(1, 2, a=3, b=4) prints:
    (1, 2)
    {"a": 3, "b": 4}
"""

# When calling functions, you can do the opposite of args/kwargs!
# Use * to expand tuples and use ** to expand kwargs.
args = (1, 2, 3, 4)
kwargs = {"a": 3, "b": 4}
all_the_args(*args) # equivalent to foo(1, 2, 3, 4)
all_the_args(**kwargs) # equivalent to foo(a=3, b=4)
all_the_args(*args, **kwargs) # equivalent to foo(1, 2, 3, 4, a=3, b=4)

# Python has first class functions
def create_adder(x):
    def adder(y):
        return x + y
    return adder

add_10 = create_adder(10)
add_10(3) #=> 13

# There are also anonymous functions
(lambda x: x > 2)(3) #=> True

# There are built-in higher order functions
map(add_10, [1,2,3]) #=> [11, 12, 13]
filter(lambda x: x > 5, [3, 4, 5, 6, 7]) #=> [6, 7]

# We can use list comprehensions for nice maps and filters
[add_10(i) for i in [1, 2, 3]]  #=> [11, 12, 13]
[x for x in [3, 4, 5, 6, 7] if x > 5] #=> [6, 7]

####################################################
## 5. Classes
####################################################

# We subclass from object to get a class.
class Human(object):

    # A class attribute. It is shared by all instances of this class
    species = "H. sapiens"

    # Basic initializer
    def __init__(self, name):
        # Assign the argument to the instance's name attribute
        self.name = name

    # An instance method. All methods take "self" as the first argument
    def say(self, msg):
       return "%s: %s" % (self.name, msg)

    # A class method is shared among all instances
    # They are called with the calling class as the first argument
    @classmethod
    def get_species(cls):
        return cls.species

    # A static method is called without a class or instance reference
    @staticmethod
    def grunt():
        return "*grunt*"


# Instantiate a class
i = Human(name="Ian")
print(i.say("hi"))     # prints out "Ian: hi"

j = Human("Joel")
print(j.say("hello"))  #prints out "Joel: hello"

# Call our class method
i.get_species() #=> "H. sapiens"

# Change the shared attribute
Human.species = "H. neanderthalensis"
i.get_species() #=> "H. neanderthalensis"
j.get_species() #=> "H. neanderthalensis"

# Call the static method
Human.grunt() #=> "*grunt*"


####################################################
## 6. Modules
####################################################

# You can import modules
import math
print(math.sqrt(16) )#=> 4

# You can get specific functions from a module
from math import ceil, floor
print(ceil(3.7))  #=> 4.0
print(floor(3.7)) #=> 3.0

# You can import all functions from a module.
# Warning: this is not recommended
from math import *

# You can shorten module names
import math as m
math.sqrt(16) == m.sqrt(16) #=> True

# Python modules are just ordinary python files. You
# can write your own, and import them. The name of the
# module is the same as the name of the file.

# You can find out which functions and attributes
# defines a module.
import math
dir(math)


####################################################
## 7. Advanced
####################################################

# Generators help you make lazy code
def double_numbers(iterable):
    for i in iterable:
        yield i + i

# generator creates the value on the fly
# instead of generating and returning all values at once it creates one in each iteration
# this means values bigger than 15 wont be processed in double_numbers
# note range is a generator too, creating a list 1-900000000 would take lot of time to be made
_range = range(1, 900000000)
# will double all numbers until a result >=30 found
for i in double_numbers(_range):
    print(i)
    if i >= 30:
        break


# Decorators
# in this example beg wraps say
# Beg will call say. If say_please is True then it will change the returned message
from functools import wraps


def beg(_say):
    @wraps(_say)
    def wrapper(*args, **kwargs):
        msg, say_please = _say(*args, **kwargs)
        if say_please:
            return "{} {}".format(msg, "Please! I am poor :(")
        return msg

    return wrapper


@beg
def say(say_please=False):
    msg = "Can you buy me a beer?"
    return msg, say_please


print(say())  # Can you buy me a beer?
print(say(say_please=True))  # Can you buy me a beer? Please! I am poor :(

Ready For More?

Free Online

Dead Tree