-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMBMM.py
174 lines (122 loc) · 4.58 KB
/
MBMM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
#from scipy.special import psi
from numpy import log
import numpy as np
from scipy.stats import beta
from scipy.special import gamma
import math
from scipy.optimize import minimize
from scipy.optimize import Bounds
from sklearn.preprocessing import normalize
#from scipy.optimize import root_scalar
class MBMM:
def __init__(self, C, n_runs, param):
self.C = C # number of Guassians/clusters
self.n_runs = n_runs
self.param = param
self.pi = np.array([1./self.C for i in range(self.C)])
def get_params(self):
return [self.param, self.pi]
def get_pi(self):
return self.pi
def fit(self, X):
'''
Parameters:
-----------
X: (N x d), data
'''
N = X.shape[0]
d = X.shape[1]
#old_loss = float('-inf')
try:
for run in range(self.n_runs):
self.e_step(X)
self.m_step(X)
#loss = self.compute_loss_function(X)
#if abs(old_loss-loss) < 1e-8:
# break
print('fit done!')
except Exception as e:
print(e)
def e_step(self, X):
#X: (N x d)
#self.gamma: (N x C)
#self.alphas: (C x d)
N = X.shape[0]
D = X.shape[1]
self.gamma = np.zeros((N, self.C))
for c in range(self.C):
self.gamma[:,c] = self.pi[c]*self.mpdf(X,self.param[c,:])
for i in range(N):
self.gamma[i,:] /= (np.sum(self.gamma[i,:]))
def mpdf(self, X, param):
N = X.shape[0]
m = X.shape[1]
top = 1.0
for j in range(m):
top *= pow(X[:,j],param[j]-1)/(pow(1-X[:,j],param[j]+1))
b_func = 1.0
for j in range(m+1):
b_func *= gamma(param[j])
#avoid overflow
if np.sum(param)>=170:
b_func = 1e-8
else:
b_func = b_func / gamma(np.sum(param))
down = 1.0
for j in range(m):
down += X[:,j]/(1-X[:,j])
down = pow(down, np.sum(param))
return top/(b_func*down)
def m_step(self, X):
N = X.shape[0]
d = X.shape[1]
#param (C*d)
param_num = self.C*(d+1) # total parameters num
x_guess = np.array([])
lower = np.array([])
upper = np.array([])
#initialize optimizatin parameters and boundary
for i in range(param_num):
x_guess = np.append(x_guess,self.param[i//(d+1)][i%(d+1)])
lower = np.append(lower, 1e-8) #lower
upper = np.append(upper, 50.) #upper
def new_loglikeli(p):
total = 0
for i in range(N):
temp = 0
for c in range(self.C):
temp += self.pi[c]*self.mpdf(np.array([X[i,:]]),p[c*(d+1):(c+1)*(d+1)])
total += log(temp)
#print(self.pi[0]*self.pdf(X[i,0],X[i,1],p[0],p[1],p[2])+self.pi[1]*self.pdf(X[i,0],X[i,1],p[3],p[4],p[5]))
return -total
bounds = Bounds(lower, upper)
res = minimize(new_loglikeli, x_guess, method='SLSQP',options={'ftol': 1e-9}, bounds=bounds)
for i in range(param_num):
self.param[i//(d+1)][i%(d+1)] = res.x[i]
#pi (C)
for c in range(self.C):
self.pi[c] = np.sum(self.gamma[:,c]) / N
def predict(self, X):
N = X.shape[0]
labels = np.zeros((N, self.C))
for c in range(self.C):
labels[:,c] = self.pi[c]*self.mpdf(X,self.param[c,:])
labels = labels.argmax(1)
return labels
def predict_proba(self, X):
N = X.shape[0]
labels = np.zeros((N, self.C))
for c in range(self.C):
labels[:,c] = self.pi[c]*self.mpdf(X,self.param[c,:])
scores = normalize(labels, axis=1, norm='l1')
return scores
def compute_loss_function(self, X):
N = X.shape[0]
total = 0.0
for i in range(N):
temp = 0.0
for c in range(self.C):
#mpdf must be 2-dim
temp += self.pi[c]*self.mpdf(np.array([X[i,:]]),self.param[c,:])
total += log(temp)
return total