-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbaseline_oversampling.py
171 lines (135 loc) · 5.9 KB
/
baseline_oversampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
#%% -------------------------------------- Import Lib --------------------------------------------------------------------
import torch
import torch.nn as nn
import os
import random
import numpy as np
from Helper import train_baseline_model, DataAug, learning_rate_finder, evaluation, FocalLoss
from torchvision import models, transforms
from torch.utils.data import Dataset, DataLoader
from sklearn.metrics import f1_score
import matplotlib.pyplot as plt
from sklearn.utils import shuffle
import torch.nn.functional as F
from PIL import Image
# %% --------------------------------------- Set-Up --------------------------------------------------------------------
SEED = 42
os.environ['PYTHONHASHSEED'] = str(SEED)
random.seed(SEED)
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# number of labels
n_classes = 3
# %% -------------------------------------- Data Prep ------------------------------------------------------------------
# load the data
x_train, y_train = np.load("train/x_train.npy"), np.load("train/y_train.npy")
x_valid, y_valid = np.load("train/x_valid.npy"), np.load("train/y_valid.npy")
x_test, y_test = np.load("train/x_test.npy"), np.load("train/y_test.npy")
# one-hot encoding label
#y_train, y_valid, y_test = to_categorical(y_train, num_classes=n_classes), to_categorical(y_valid, num_classes=n_classes), to_categorical(y_test, num_classes=n_classes)
x_train, y_train = shuffle(x_train, y_train) ## shuffle training set
# check shape
#print(x_train.shape, y_train.shape)
#print(x_valid.shape, y_valid.shape)
#print(x_test.shape, y_test.shape)
#%% --------------------------------------- COVID cases to be oversampled -------------------------------------------------
x_covid_train = []
y_covid_train = []
for index in range(len(y_train)):
if y_train[index] == 0:
x_covid_train.append(x_train[index])
y_covid_train.append(y_train[index])
x_covid_train = np.array(x_covid_train)
y_covid_train = np.array(y_covid_train)
#print(len(y_covid_train))
#%% ------------------------------ DataLoader, Data Augmentation ----------------------------------------------------------
# convert to torch.Tensor
# transformation for oversampled training set
train_data_transform = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((150),interpolation=Image.NEAREST),
transforms.RandomCrop(128),
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.RandomRotation(degrees=10),
transforms.ToTensor()
])
# transformation for original training, validation and testing set
test_data_transform = transforms.Compose([
transforms.ToPILImage(),
transforms.ToTensor()
])
# batch size
batch_train = 256
batch_test = 512
# apply transformation
trainset_aug = DataAug(x_covid_train, y_covid_train, transform = train_data_transform ,length=5*len(x_covid_train))
trainset = DataAug(x_train, y_train, transform = test_data_transform ,length=len(x_train))
trainset = torch.utils.data.ConcatDataset([trainset_aug,trainset]) # combine trainset
valset = DataAug(x_valid, y_valid, transform = test_data_transform, length=len(x_valid))
testset = DataAug(x_test, y_test, transform = test_data_transform, length=len(x_test))
# generate DataLoader
trainloader = DataLoader(trainset, batch_size=batch_train)
valloader = DataLoader(valset, batch_size=batch_test)
testloader = DataLoader(testset, batch_size=batch_test)
# print loader size
#print(len(trainloader.sampler))
#print(len(valloader.sampler))
#print(len(testloader.sampler))
#%% ---------------------------------- Model Architecture ----------------------------------------------------------
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.cnn_layers = nn.Sequential(
# Defining a 2D convolution layer
nn.Conv2d(3, 6, kernel_size=3), # output (6x126x126)
nn.BatchNorm2d(6),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2), # output (6x63x63)
# Defining another 2D convolution layer
nn.Conv2d(6, 16, kernel_size=3), # output (16x61x61)
nn.BatchNorm2d(16),
nn.ReLU(inplace=True),
nn.AvgPool2d(kernel_size=2, stride=2), # output (16x30x30)
)
self.linear_layers = nn.Sequential(
nn.Linear(16 * 30 * 30, n_classes),
)
# Defining the forward pass
def forward(self, x):
x = self.cnn_layers(x)
x = x.view(x.size(0), -1)
x = self.linear_layers(x)
return x
#%% --------------------------------- Preparation -----------------------------------------------------------------
model = Net()
LR = 3e-4
criterion = nn.CrossEntropyLoss()
epochs = 1000
dir = os.path.dirname('Model/')
if not os.path.exists(dir):
os.makedirs(dir)
path ="Model/baseline_oversampling.pt"
train_losses, val_losses = train_baseline_model(model, criterion, LR, epochs, "train_val",trainloader, valloader, path)
#%% ----------------
# load best model weights
model.load_state_dict(torch.load(path))
TPR_val, FNR_val, score_val = evaluation(model, valloader)
TPR_test, FNR_test, score_test = evaluation(model, testloader)
#%% ---------------------------------------- Learning curve ------------------------------------------------------------
inds = np.arange(1,len(val_losses)+1)
plt.figure()
plt.plot(inds.astype(np.uint8), train_losses, label = "training loss")
plt.plot(inds.astype(np.uint8), val_losses, label = "validation loss")
plt.xlabel("Epoch")
plt.ylabel("Magnitude")
plt.title("Baseline model learning curve")
plt.legend(loc='best')
plt.xticks(np.arange(0, max(inds)+2, 3))
plt.show()
#%%
print("Validation set: sensitivity = {:.4f}, specificity = {:.4f}, score = {:.4f}".format(TPR_val, FNR_val, score_val))
print("Testing set: sensitivity = {:.4f}, specificity = {:.4f}, score = {:.4f}".format(TPR_test, FNR_test, score_test))