-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresnet34_freeze.py
139 lines (105 loc) · 4.7 KB
/
resnet34_freeze.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
#%% -------------------------------------- Import Lib --------------------------------------------------------------------
import torch
import torch.nn as nn
import os
import random
import numpy as np
from Helper import train_baseline_model, DataAug, learning_rate_finder, evaluation
from torchvision import models, transforms
from torch.utils.data import Dataset, DataLoader
from sklearn.metrics import f1_score
import matplotlib.pyplot as plt
from sklearn.utils import shuffle
import torch.nn.functional as F
# %% --------------------------------------- Set-Up --------------------------------------------------------------------
SEED = 42
os.environ['PYTHONHASHSEED'] = str(SEED)
random.seed(SEED)
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# number of labels
n_classes = 3
# %% -------------------------------------- Data Prep ------------------------------------------------------------------
# load the data
x_train, y_train = np.load("train/x_train.npy"), np.load("train/y_train.npy")
x_valid, y_valid = np.load("train/x_valid.npy"), np.load("train/y_valid.npy")
x_test, y_test = np.load("train/x_test.npy"), np.load("train/y_test.npy")
# one-hot encoding label
#y_train, y_valid, y_test = to_categorical(y_train, num_classes=n_classes), to_categorical(y_valid, num_classes=n_classes), to_categorical(y_test, num_classes=n_classes)
x_train, y_train = shuffle(x_train, y_train) ## shuffle training set
# check shape
#print(x_train.shape, y_train.shape)
#print(x_valid.shape, y_valid.shape)
#print(x_test.shape, y_test.shape)
#%% ------------------------------ DataLoader, Data Augmentation ----------------------------------------------------------
# convert to torch.Tensor
data_transform = transforms.Compose([
transforms.ToPILImage(),
transforms.ToTensor(),
])
# batch size
batch_train = 128
batch_test = 512
# apply transformation
trainset = DataAug(x_train, y_train, transform = data_transform ,length=len(x_train))
valset = DataAug(x_valid, y_valid, transform = data_transform, length=len(x_valid))
testset = DataAug(x_test, y_test, transform = data_transform, length=len(x_test))
# generate DataLoader
trainloader = DataLoader(trainset, batch_size=batch_train)
valloader = DataLoader(valset, batch_size=batch_test)
testloader = DataLoader(testset, batch_size=batch_test)
# print loader size
#print(len(trainloader.sampler))
#print(len(valloader.sampler))
#print(len(testloader.sampler))
#%% ---------------------------------- Model Architecture ----------------------------------------------------------
model = models.resnet34(pretrained=True)
num_ftrs = model.fc.in_features
model.fc = nn.Sequential(
nn.Linear(num_ftrs, n_classes))
for param in model.parameters():
param.requires_grad = False
for param in model.fc.parameters():
param.requires_grad = True
#%% --------------------------------- Preparation -----------------------------------------------------------------
criterion = nn.CrossEntropyLoss()
loss, rate = learning_rate_finder(model, criterion, min_lr=1e-7, max_lr = 1e-2, iteration = 200, trainloader=trainloader)
#%% --------------------------------- Preparation -----------------------------------------------------------------
model = models.resnet34(pretrained=True)
num_ftrs = model.fc.in_features
model.fc = nn.Sequential(
nn.Linear(num_ftrs, n_classes))
for param in model.parameters():
param.requires_grad = False
for param in model.fc.parameters():
param.requires_grad = True
LR = 1e-3
criterion = nn.CrossEntropyLoss()
epochs = 1000
dir = os.path.dirname('Model/')
if not os.path.exists(dir):
os.makedirs(dir)
path ="Model/resnet34_0.pt"
train_losses, val_losses = train_baseline_model(model, criterion, LR, epochs, "train_val", trainloader, valloader, path)
#%% ----------------
# load best model weights
model.load_state_dict(torch.load(path))
TPR_val, FNR_val, score_val = evaluation(model, valloader)
TPR_test, FNR_test, score_test = evaluation(model, testloader)
#%% ---------------------------------------- Learning curve ------------------------------------------------------------
inds = np.arange(1,len(val_losses)+1)
plt.figure()
plt.plot(inds.astype(np.uint8), train_losses, label = "training loss")
plt.plot(inds.astype(np.uint8), val_losses, label = "validation loss")
plt.xlabel("Epoch")
plt.ylabel("Magnitude")
plt.title("Resnet34 model learning curve")
plt.legend(loc='best')
plt.xticks(np.arange(0, max(inds)+2, 3))
plt.show()
#%%
print("Validation set: sensitivity = {:.4f}, specificity = {:.4f}, score = {:.4f}".format(TPR_val, FNR_val, score_val))
print("Testing set: sensitivity = {:.4f}, specificity = {:.4f}, score = {:.4f}".format(TPR_test, FNR_test, score_test))