This repository has been archived by the owner on Sep 18, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreference.bib
586 lines (522 loc) · 17 KB
/
reference.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
@Misc{ref1,
title={Curry, C. Lithium-ion battery costs and market: squeezed margins seek technology improvements {\&} new business models. Bloomberg New Energy Financehttps://data.bloomberglp.com/bnef/sites/14/2017/07/BNEF-Lithium-ion-battery-costs-and-market.pdf (5 July 2017).},
url={https://data.bloomberglp.com/bnef/sites/14/2017/07/BNEF-Lithium-ion-battery-costs-and-market.pdf}
}
@Misc{ref2,
title={Bernhart, W. Challenges and opportunities in lithium-ion battery supply. In Future Lithium-ion Batteries 316−334 (Royal Society of Chemistry, 2019).}
}
@Article{You2017,
author={You, G.-.. W.
and Park, S.
and Oh, D.},
title={Diagnosis of electric vehicle batteries using recurrent neural networks},
journal={IEEE Trans. Indust. Electron.},
year={2017},
volume={64},
doi={10.1109/TIE.2017.2674593},
url={https://doi.org/10.1109/TIE.2017.2674593}
}
@Article{Barré2013,
author={Barr{\'e}, A.},
title={A review on lithium-ion battery ageing mechanisms and estimations for automotive applications},
journal={J. Power Sources},
year={2013},
volume={241},
doi={10.1016/j.jpowsour.2013.05.040},
url={https://doi.org/10.1016/j.jpowsour.2013.05.040}
}
@Article{Zhang2011,
author={Zhang, J.
and Lee, J.},
title={A review on prognostics and health monitoring of li-ion battery},
journal={J. Power Sources},
year={2011},
volume={196},
doi={10.1016/j.jpowsour.2011.03.101},
url={https://doi.org/10.1016/j.jpowsour.2011.03.101}
}
@Article{Farmann2015,
author={Farmann, A.
and Waag, W.
and Marongiu, A.
and Sauer, D. U.},
title={Critical review of on-board capacity estimation techniques for lithium-ion batteries in electric and hybrid electric vehicles},
journal={J. Power Sources},
year={2015},
volume={281},
doi={10.1016/j.jpowsour.2015.01.129},
url={https://doi.org/10.1016/j.jpowsour.2015.01.129}
}
@Article{Hannan2017,
author={Hannan, M. A.
and Lipu, M. H.
and Hussain, A.
and Mohamed, A.},
title={A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: challenges and recommendations},
journal={Renew. Sustain. Energy Rev.},
year={2017},
volume={78},
doi={10.1016/j.rser.2017.05.001},
url={https://doi.org/10.1016/j.rser.2017.05.001}
}
@Article{Hu2012,
author={Hu, X.
and Li, S.
and Peng, H.},
title={A comparative study of equivalent circuit models for Li-ion batteries},
journal={J. Power Sources},
year={2012},
volume={198},
doi={10.1016/j.jpowsour.2011.10.013},
url={https://doi.org/10.1016/j.jpowsour.2011.10.013}
}
@Article{Feng2015,
author={Feng, T.
and Yang, L.
and Zhao, X.
and Zhang, H.
and Qiang, J.},
title={Online identification of lithium-ion battery parameters based on an improved equivalent-circuit model and its implementation on battery state-of-power prediction},
journal={J. Power Sources},
year={2015},
volume={281},
doi={10.1016/j.jpowsour.2015.01.154},
url={https://doi.org/10.1016/j.jpowsour.2015.01.154}
}
@Article{Andre2011,
author={Andre, D.},
title={Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. II: Modelling},
journal={J. Power Sources},
year={2011},
volume={196},
doi={10.1016/j.jpowsour.2010.07.071},
url={https://doi.org/10.1016/j.jpowsour.2010.07.071}
}
@Misc{ref11,
title={Daigle, M. J. {\&} Kulkarni, C. S. Electrochemistry-based battery modeling for prognostics. In Ann. Conf. Prognostics and Health Management Society 040 (PHM, 2013).}
}
@Misc{ref12,
title={Bole, B., Kulkarni, C. S. {\&} Daigle, M. Adaptation of an electrochemistry-based li-ion battery model to account fordeterioration observed under randomized use. In Proc. Ann. Conf. Prognostics and Health Management Society (PHM, 2014).}
}
@Article{Prasad2013,
author={Prasad, G. K.
and Rahn, C. D.},
title={Model based identification of aging parameters in lithium ion batteries},
journal={J. Power Sources},
year={2013},
volume={232},
doi={10.1016/j.jpowsour.2013.01.041},
url={https://doi.org/10.1016/j.jpowsour.2013.01.041}
}
@Article{Severson2019,
author={Severson, K. A.},
title={Data-driven prediction of battery cycle life before capacity degradation},
journal={Nat. Energy},
year={2019},
volume={4},
doi={10.1038/s41560-019-0356-8},
url={https://doi.org/10.1038/s41560-019-0356-8}
}
@Article{Saha2008,
author={Saha, B.
and Goebel, K.
and Poll, S.
and Christophersen, J.},
title={Prognostics methods for battery health monitoring using a Bayesian framework},
journal={IEEE Trans. Instrum. Measure.},
year={2008},
volume={58},
doi={10.1109/TIM.2008.2005965},
url={https://doi.org/10.1109/TIM.2008.2005965}
}
@Article{Goebel2008,
author={Goebel, K.
and Saha, B.
and Saxena, A.
and Celaya, J. R.
and Christophersen, J. P.},
title={Prognostics in battery health management},
journal={IEEE Instrum. Measure. Mag.},
year={2008},
volume={11},
doi={10.1109/MIM.2008.4579269},
url={https://doi.org/10.1109/MIM.2008.4579269}
}
@Article{Hu2015,
author={Hu, X.
and Jiang, J.
and Cao, D.
and Egardt, B.},
title={Battery health prognosis for electric vehicles using sample entropy and sparse Bayesian predictive modeling},
journal={IEEE Trans. Indust. Electron.},
year={2015},
volume={63}
}
@Article{Klass2014,
author={Klass, V.
and Behm, M.
and Lindbergh, G.},
title={A support vector machine-based state-of-health estimation method for lithium-ion batteries under electric vehicle operation},
journal={J. Power Sources},
year={2014},
volume={270},
doi={10.1016/j.jpowsour.2014.07.116},
url={https://doi.org/10.1016/j.jpowsour.2014.07.116}
}
@Article{Attia2020,
author={Attia, P. M.},
title={Closed-loop optimization of fast-charging protocols for batteries with machine learning},
journal={Nature},
year={2020},
volume={578},
doi={10.1038/s41586-020-1994-5},
url={https://doi.org/10.1038/s41586-020-1994-5}
}
@Article{Coleman2008,
author={Coleman, M.
and Hurley, W. G.
and Lee, C. K.},
title={An improved battery characterization method using a two-pulse load test},
journal={IEEE Trans. Energy Conv.},
year={2008},
volume={23},
doi={10.1109/TEC.2007.914329},
url={https://doi.org/10.1109/TEC.2007.914329}
}
@Article{Waag2013,
author={Waag, W.
and K{\"a}bitz, S.
and Sauer, D. U.},
title={Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application},
journal={Appl. Energy},
year={2013},
volume={102},
doi={10.1016/j.apenergy.2012.09.030},
url={https://doi.org/10.1016/j.apenergy.2012.09.030}
}
@Article{Tröltzsch2006,
author={Tr{\"o}ltzsch, U.
and Kanoun, O.
and Tr{\"a}nkler, H.-.. R.},
title={Characterizing aging effects of lithium ion batteries by impedance spectroscopy},
journal={Electrochim. Acta},
year={2006},
volume={51},
doi={10.1016/j.electacta.2005.02.148},
url={https://doi.org/10.1016/j.electacta.2005.02.148}
}
@Article{Birkl2017,
author={Birkl, C. R.
and Roberts, M. R.
and McTurk, E.
and Bruce, P. G.
and Howey, D. A.},
title={Degradation diagnostics for lithium ion cells},
journal={J. Power Sources},
year={2017},
volume={341},
doi={10.1016/j.jpowsour.2016.12.011},
url={https://doi.org/10.1016/j.jpowsour.2016.12.011}
}
@Article{Li2019,
author={Li, Y.
and Zhong, S.
and Zhong, Q.
and Shi, K.},
title={Lithium-ion battery state of health monitoring based on ensemble learning},
journal={IEEE Access},
year={2019},
volume={7},
doi={10.1109/ACCESS.2019.2891063},
url={https://doi.org/10.1109/ACCESS.2019.2891063}
}
@Article{Li2018a,
author={Li, Y.},
title={Random forest regression for online capacity estimation of lithium-ion batteries},
journal={Appl. Energy},
year={2018},
volume={232},
doi={10.1016/j.apenergy.2018.09.182},
url={https://doi.org/10.1016/j.apenergy.2018.09.182}
}
@Misc{ref26,
title={Sun, B., Ren, P., Gong, M., Zhou, X. {\&} Bian, J. SOH estimation for Li-ion batteries based on features of IC curves and multi-output Gaussian process regression method. DEStech Trans. Environ. Energy Earth Sci.https://doi.org/10.12783/dteees/iceee2018/27789 (2018).}
}
@Article{Feng2019,
author={Feng, X.},
title={Online state-of-health estimation for Li-ion battery using partial charging segment based on support vector machine},
journal={IEEE Trans. Vehic. Technol.},
year={2019},
volume={68},
doi={10.1109/TVT.2019.2927120},
url={https://doi.org/10.1109/TVT.2019.2927120}
}
@Article{Li2018b,
author={Li, Y.},
title={A quick on-line state of health estimation method for Li-ion battery with incremental capacity curves processed by Gaussian filter},
journal={J. Power Sources},
year={2018},
volume={373},
doi={10.1016/j.jpowsour.2017.10.092},
url={https://doi.org/10.1016/j.jpowsour.2017.10.092}
}
@Article{Dubarry2006,
author={Dubarry, M.
and Svoboda, V.
and Hwu, R.
and Liaw, B. Y.},
title={Incremental capacity analysis and close-to-equilibrium ocv measurements to quantify capacity fade in commercial rechargeable lithium batteries},
journal={Electrochem. Solid State Lett.},
year={2006},
volume={9},
doi={10.1149/1.2221767},
url={https://doi.org/10.1149/1.2221767}
}
@Article{Weng2013,
author={Weng, C.
and Cui, Y.
and Sun, J.
and Peng, H.},
title={On-board state of health monitoring of lithium-ion batteries using incremental capacity analysis with support vector regression},
journal={J. Power Sources},
year={2013},
volume={235},
doi={10.1016/j.jpowsour.2013.02.012},
url={https://doi.org/10.1016/j.jpowsour.2013.02.012}
}
@Article{Yang2018,
author={Yang, D.
and Zhang, X.
and Pan, R.
and Wang, Y.
and Chen, Z.},
title={A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve},
journal={J. Power Sources},
year={2018},
volume={384},
doi={10.1016/j.jpowsour.2018.03.015},
url={https://doi.org/10.1016/j.jpowsour.2018.03.015}
}
@Article{Richardson2018,
author={Richardson, R. R.
and Birkl, C. R.
and Osborne, M. A.
and Howey, D. A.},
title={Gaussian process regression for in situ capacity estimation of lithium-ion batteries},
journal={IEEE Trans. Indust. Inform.},
year={2018},
volume={15},
doi={10.1109/TII.2018.2794997},
url={https://doi.org/10.1109/TII.2018.2794997}
}
@Misc{ref33,
title={Shen, Y., Seeger, M. {\&} Ng, A. Y. Fast Gaussian process regression using KD-trees. In Adv. Neural Information Processing Systems (NIPS) 1225−1232 (2006).}
}
@Misc{ref34,
title={Saha, B., Poll, S., Goebel, K. {\&} Christophersen, J. An integrated approach to battery health monitoring using Bayesian regression and state estimation. In 2007 IEEE Autotestcon 646−653 (IEEE, 2007).}
}
@Article{Ben-Shimon2006,
author={Ben-Shimon, D.
and Shmilovici, A.},
title={Accelerating the relevance vector machine via data partitioning},
journal={Found. Comput. Decision Sci.},
year={2006},
volume={31}
}
@Article{Wang2018,
author={Wang, Z.
and Zeng, S.
and Guo, J.
and Qin, T.},
title={Remaining capacity estimation of lithium-ion batteries based on the constant voltage charging profile},
journal={PLoS ONE},
year={2018},
volume={13},
doi={10.1371/journal.pone.0200169},
url={https://doi.org/10.1371/journal.pone.0200169}
}
@Misc{ref37,
title={Engel, S. J., Gilmartin, B. J., Bongort, K. {\&} Hess, A. Prognostics, the real issues involved with predicting life remaining. In 2000 IEEE Aerospace Conf. Proc. 00TH8484, Vol. 6, 457−469 (IEEE, 2000).}
}
@Misc{ref38,
title={Pomerantseva, E., Bonaccorso, F., Feng, X., Cui, Y. {\&} Gogotsi, Y. Energy storage: the future enabled by nanomaterials. Science366, eaan8285 (2019).}
}
@Article{Seh2016,
author={Seh, Z. W.
and Sun, Y.
and Zhang, Q.
and Cui, Y.},
title={Designing high-energy lithium--sulfur batteries},
journal={Chem. Soc. Rev.},
year={2016},
volume={45},
doi={10.1039/C5CS00410A},
url={https://doi.org/10.1039/C5CS00410A}
}
@Misc{ref40,
title={Liu, G., Bao, H. {\&} Han, B. A stacked autoencoder-based deep neural network for achieving gearbox fault diagnosis. Hindawi Math. Problems Eng.2018, 5105709 (2018).}
}
@Misc{ref41,
title={Kanter, J. M. {\&} Veeramachaneni, K. Deep feature synthesis: towards automating data science endeavors. In 2015 IEEE Int. Conf. Data Sci. Adv. Analytics (DSAA) 1−10 (IEEE, 2015).}
}
@Article{Williard2013,
author={Williard, N.
and He, W.
and Osterman, M.
and Pecht, M.},
title={Comparative analysis of features for determining state of health in lithium-ion batteries},
journal={Int. J. Prognostics Health Manage.},
year={2013},
volume={4}
}
@Misc{ref43,
title={Zhang, Y. {\&} Guo, B. Online capacity estimation of lithium-ion batteries based on novel feature extraction and adaptive multi-kernel relevance vector machine. Energies8, 12439−12457 (2015).}
}
@Article{Guyon2002,
author={Guyon, I.
and Weston, J.
and Barnhill, S.
and Vapnik, V.},
title={Gene selection for cancer classification using support vector machines},
journal={Machine Learning},
year={2002},
volume={46},
doi={10.1023/A:1012487302797},
url={https://doi.org/10.1023/A:1012487302797}
}
@Article{Darst2018,
author={Darst, B. F.
and Malecki, K. C.
and Engelman, C. D.},
title={Using recursive feature elimination in random forest to account for correlated variables in high dimensional data},
journal={BMC Genet.},
year={2018},
volume={19},
doi={10.1186/s12863-018-0633-8},
url={https://doi.org/10.1186/s12863-018-0633-8}
}
@Article{Gregorutti2017,
author={Gregorutti, B.
and Michel, B.
and Saint-Pierre, P.},
title={Correlation and variable importance in random forests},
journal={Statist. Comput.},
year={2017},
volume={27},
doi={10.1007/s11222-016-9646-1},
url={https://doi.org/10.1007/s11222-016-9646-1}
}
@Misc{ref47,
title={Goodfellow, I. J., Shlens, J. {\&} Szegedy, C. Explaining and harnessing adversarial examples. Preprint at https://arxiv.org/abs/1412.6572 (2014).},
url={https://arxiv.org/abs/1412.6572}
}
@Article{Doyle1993,
author={Doyle, M.
and Fuller, T. F.
and Newman, J.},
title={Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell},
journal={J. Electrochem. Soc.},
year={1993},
volume={140},
doi={10.1149/1.2221597},
url={https://doi.org/10.1149/1.2221597}
}
@Article{Wager2014,
author={Wager, S.
and Hastie, T.
and Efron, B.},
title={Confidence intervals for random forests: the jackknife and the infinitesimal jackknife},
journal={J. Machine Learning Res.},
year={2014},
volume={15}
}
@Misc{ref50,
title={Lakshminarayanan, B., Pritzel, A. {\&} Blundell, C. Simple and scalable predictive uncertainty estimation using deep ensembles. In Adv. Neural Information Processing Systems (NIPS) 6402−6413 (Curran Associates, 2017).}
}
@Article{Bergstra2012,
author={Bergstra, J.
and Bengio, Y.},
title={Random search for hyper-parameter optimization},
journal={J. Machine Learning Res.},
year={2012},
volume={13}
}
@Article{André2004,
author={Andr{\'e}, M.},
title={The Artemis European driving cycles for measuring car pollutant emissions},
journal={Sci. Total Environ.},
year={2004},
volume={334},
doi={10.1016/j.scitotenv.2004.04.070},
url={https://doi.org/10.1016/j.scitotenv.2004.04.070}
}
@Article{Markham1998,
author={Markham, I. S.
and Rakes, T. R.},
title={The effect of sample size and variability of data on the comparative performance of artificial neural networks and regression},
journal={Comput. Operations Res.},
year={1998},
volume={25},
doi={10.1016/S0305-0548(97)00074-9},
url={https://doi.org/10.1016/S0305-0548(97)00074-9}
}
@Article{Handoko2018,
author={Handoko, A. D.
and Wei, F.
and Yeo, B. S.
and Seh, Z. W.},
title={Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques},
journal={Nat. Catal.},
year={2018},
volume={1},
doi={10.1038/s41929-018-0182-6},
url={https://doi.org/10.1038/s41929-018-0182-6}
}
@Misc{ref55,
title={Jagielski, M. et al. Manipulating machine learning: poisoning attacks and countermeasures for regression learning. In 2018 IEEE Symp. on Security and Privacy (SP) 19−35 (IEEE, 2018).}
}
@Misc{ref56,
title={Chen, P.-Y., Sharma, Y., Zhang, H., Yi, J. {\&} Hsieh, C.-J. EAD: elastic-net attacks to deep neural networks via adversarial examples. In Proc. AAAI Conf. Artificial Intelligence Vol. 32 (AAAI, 2018).}
}
@Misc{ref57,
title={Sharma, Y. {\&} Chen, P.-Y. Attacking the Madry defense model with L1-based adversarial examples. Preprint at https://arxiv.org/abs/1710.10733 (2017).},
url={https://arxiv.org/abs/1710.10733}
}
@Article{Pedregosa2011,
author={Pedregosa, F.},
title={Scikit-learn: machine learning in Python},
journal={J. Machine Learning Res.},
year={2011},
volume={12}
}
@Misc{ref59,
title={Bishop, C. M. Pattern Recognition And Machine Learning (Springer, 2006).}
}
@Misc{ref60,
title={Rasmussen, C. E. Gaussian processes in machine learning. In Summer School on Machine Learning 63−71 (Springer, 2003).}
}
@Article{Breiman2001,
author={Breiman, L.},
title={Random forests},
journal={Machine Learning},
year={2001},
volume={45},
doi={10.1023/A:1010933404324},
url={https://doi.org/10.1023/A:1010933404324}
}
@Misc{ref62,
title={Kuleshov, V., Fenner, N. {\&} Ermon, S. Accurate uncertainties for deep learning using calibrated regression. Preprint at https://arxiv.org/abs/1807.00263 (2018).},
url={https://arxiv.org/abs/1807.00263}
}
@Article{Chakravarti1989,
author={Chakravarti, N.},
title={Isotonic median regression: a linear programming approach},
journal={Math. Operations Res.},
year={1989},
volume={14},
doi={10.1287/moor.14.2.303},
url={https://doi.org/10.1287/moor.14.2.303}
}
@Misc{ref64,
title={Saxena, A. et al. Metrics for evaluating performance of prognostic techniques. In 2008 Int. Conf. on Prognostics and Health Manage. 1−17 (IEEE, 2008).}
}