diff --git a/.gitignore b/.gitignore
index 38c4422..3b10f54 100644
--- a/.gitignore
+++ b/.gitignore
@@ -6,6 +6,7 @@ output
*egg*
dist
__pycache__
+*/.ipynb_checkpoints/*
idealg_v
build
venv3
diff --git a/notebooks/squig_stats.ipynb b/notebooks/squig_stats.ipynb
new file mode 100644
index 0000000..10f1c2c
--- /dev/null
+++ b/notebooks/squig_stats.ipynb
@@ -0,0 +1,559 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "e12bb0ec",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ ""
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from IPython.core.display import display, HTML\n",
+ "display(HTML(\n",
+ " ''\n",
+ "))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "7cda617d",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "from io import StringIO\n",
+ "\n",
+ "POS_DWELL = 0\n",
+ "POS_MEAN = 1\n",
+ "POS_MEDIAN = 2\n",
+ "POS_STD = 3\n",
+ "POS_BOXPLOT = 4\n",
+ "POS_DWELL_STD = 5\n",
+ "\n",
+ "def get_boxplot_stats(data):\n",
+ " return [round(np.min(data), 4), round(np.percentile(data, 25), 4), round(np.median(data), 4), round(np.percentile(data, 75), 4), round(np.max(data), 4)]\n",
+ "\n",
+ "def get_stats(file_path, base_shift=0):\n",
+ " df = pd.read_csv(file_path, sep='\\t', header=None)\n",
+ "\n",
+ " # Initialize an empty list to store cell means\n",
+ " pos_dwell = []\n",
+ " pos_mean = []\n",
+ " pos_median = []\n",
+ " pos_std = []\n",
+ " pos_boxplot = []\n",
+ " pos_dwell_std = []\n",
+ " \n",
+ " # Iterate over columns\n",
+ " for col in df.columns[abs(base_shift):]:\n",
+ " col_means = []\n",
+ " col_dwells = []\n",
+ " col_medians = []\n",
+ " col_stds = []\n",
+ " col_values = []\n",
+ "\n",
+ " for cell in df[col]:\n",
+ " if pd.isna(cell):\n",
+ " continue\n",
+ "\n",
+ " cell_values = str(cell).split(',')\n",
+ " col_dwells.append(len(cell_values))\n",
+ "\n",
+ " numeric_values = pd.to_numeric(cell_values, errors='coerce')\n",
+ " col_values.extend(numeric_values)\n",
+ " col_means.append(np.nanmean(numeric_values))\n",
+ " col_medians.append(np.nanmedian(numeric_values))\n",
+ " col_stds.append(np.std(numeric_values))\n",
+ " \n",
+ "# print(col_dwells)\n",
+ "# print(col_values)\n",
+ " \n",
+ " pos_dwell.append(get_boxplot_stats(col_dwells))\n",
+ " pos_mean.append(get_boxplot_stats(col_means))\n",
+ " pos_median.append(get_boxplot_stats(col_medians))\n",
+ " pos_std.append(get_boxplot_stats(col_stds))\n",
+ " pos_boxplot.append(get_boxplot_stats(col_values))\n",
+ " \n",
+ " pos_dwell_std.append(np.std(col_dwells))\n",
+ " \n",
+ "\n",
+ "# print(pos_dwell)\n",
+ "# print(pos_mean)\n",
+ "# print(pos_median)\n",
+ "# print(pos_std)\n",
+ " return [pos_dwell, pos_mean, pos_median, pos_std, pos_boxplot, pos_dwell_std]\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "d7e27dde",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# %matplotlib notebook\n",
+ "import matplotlib.pyplot as plt\n",
+ "import numpy as np\n",
+ "from matplotlib.lines import Line2D\n",
+ "\n",
+ "colors = ['lightblue','lightcoral','lightcyan','lightgoldenrodyellow','lightgreen','lightpink','lightsalmon','lightseagreen','lightskyblue','lightslategray']\n",
+ "medianprops = dict(color='red', linewidth=2)\n",
+ "\n",
+ "def draw_boxplots(stats, ref, ref_index, title, labels):\n",
+ "\n",
+ " plt.figure(figsize=(30,6))\n",
+ "\n",
+ " num_stats = len(stats)\n",
+ " \n",
+ " all_stats = []\n",
+ " x_ticks = []\n",
+ " for i in range(len(stats[0])):\n",
+ " for j in range(num_stats):\n",
+ " all_stats.append(stats[j][i])\n",
+ "\n",
+ " for i in range(len(stats[0])):\n",
+ " x_ticks.append(ref[i])\n",
+ " x_ticks.append(ref_index[i])\n",
+ " for j in range(num_stats-2):\n",
+ " x_ticks.append('')\n",
+ "\n",
+ " distance_within_group = 1\n",
+ " distance_between_groups = 3\n",
+ " positions = [0]\n",
+ " positions.append(positions[-1]+distance_within_group)\n",
+ " for i in range(len(stats[0])):\n",
+ " for j in range(num_stats-1):\n",
+ " positions.append(positions[-1]+distance_within_group)\n",
+ " positions.append(positions[-1]+distance_between_groups)\n",
+ "\n",
+ " positions = positions[1:-1]\n",
+ "\n",
+ " # Set box colors\n",
+ " box_colors = colors[:num_stats] * (len(all_stats) // 2)\n",
+ "\n",
+ " # Create paired box plots with different colors for experiments and controls\n",
+ " bplot = plt.boxplot(all_stats, medianprops=medianprops, positions=positions, vert=True, patch_artist=True, flierprops=dict(marker='.', markerfacecolor='black', markersize=5))\n",
+ "\n",
+ " for patch, color in zip(bplot['boxes'], box_colors):\n",
+ " patch.set_facecolor(color)\n",
+ " \n",
+ " legend_elements = []\n",
+ " for j in range(num_stats):\n",
+ " legend_elements.append(Line2D([0], [0], marker='s', color='w', markerfacecolor=box_colors[j], markersize=10, label=labels[j]))\n",
+ " \n",
+ " plt.legend(handles=legend_elements, loc='upper right')\n",
+ "\n",
+ " # Add labels and title\n",
+ " plt.xticks(positions, x_ticks)\n",
+ " plt.title(title)\n",
+ "\n",
+ " # Show the plot\n",
+ " plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "dddfdc9f",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "ref = \"AGGTTGCAGTGAACCAACGTCGCCACTGCACTCCAGTCTGGCGACAGAGCGAGACTCCCTGTCA\"\n",
+ "ref_index = list(range(7,100))\n",
+ "\n",
+ "file_path = '../test/data/raw/metric/eventalign.tsv'\n",
+ "f5c = get_stats(file_path, base_shift=-6)\n",
+ "\n",
+ "file_path = '../test/data/raw/metric/nanopolish.tsv'\n",
+ "nanopolish = get_stats(file_path, base_shift=-6)\n",
+ "\n",
+ "file_path = '../test/data/raw/metric/realign.tsv'\n",
+ "realign = get_stats(file_path, base_shift=-6)\n",
+ "\n",
+ "file_path = '../test/data/raw/metric/sigfish.tsv'\n",
+ "sigfish = get_stats(file_path, base_shift=-6)\n",
+ "\n",
+ "file_path = '../test/data/raw/metric/squigualator.tsv'\n",
+ "squigulator = get_stats(file_path, base_shift=-6)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "a1d54a40",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABrIAAAF1CAYAAACkpXqTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAB5yUlEQVR4nO39fZxbdZ3//z/fvZgWiNIUcIVJ5wQ/P5AOzbSU0jJISwEtiHy4FIVFf7BesODuSv3cQFA+LCMuyvrpugOsC4si6C4gCKiIrltBKqDDRQulgYCyLMlMCiLQtBqgnV68v3/knJCZSWYmM0nOOcnjfrvNbc6cnCSvycV5n3Ne7/frbay1AgAAAAAAAAAAAIJmit8BAAAAAAAAAAAAAOWQyAIAAAAAAAAAAEAgkcgCAAAAAAAAAABAIJHIAgAAAAAAAAAAQCCRyAIAAAAAAAAAAEAgkcgCAAAAAAAAAABAIJHIAgAAAIAmZIw51xjzSMnfeWPM+/yMCQAAAACqRSILAAAAAOpgeCLJb9baiLX2f/yOAwAAAACqQSILAAAAAAAAAAAAgUQiCwAAAEDTM8bsZ4y52xjzmjHmJWPM50vWv22MmV2y7SHGmNeNMdPdvz9ljHnOGJMzxvyXMcYp2dYaY843xrzg3v4tUzBX0g2Sut2SfpsrxLXGGPMPxpjfutv91BizlzHmVmPMn4wxTxhj4iXbH2SM+aUxZpMx5nfGmI+V3LaXMeZe936PS/pfw57LGmP+f+7yR4wxT7nbDhhjekq2i7vbnmOM6Xdfi8sm8/oDAAAAwESRyAIAAADQ1IwxUyT9VNLTktolHStppTHmOGvty5L6JJ1ecpe/lHSXtXa7MeYUSV+WdJqkfSQ9LOn2YU9xoqTDJM2X9DFJx1lrn5N0vqQ+t6TfrFFCPFPSJ93Y/pcbz82SZkt6TtIV7v+xh6RfSrpN0nsknSXpX40xB7uP8y1JWyXtK+lT7k8lb0r6/0uaJekjki5w/9dSR0p6vwqv19+7yTkAAAAAaCgSWQAAAACa3WGS9rHWXmmtHXTnifq2CgkkqZAYOkuSjDHGXX+be9tfS/q6tfY5a+0OSV+TtKB0VJakq621m621/ZIelLSgyvhutta+aK3dIuk/Jb1orb3ffb4fSjrE3e5ESWlr7c3W2h3W2icl3S3po8aYqSok4/7eWvumtfYZSd+r9ITW2jXW2qS1dpe1doMKybmjhm32FWvt29bap1VIAs6v8v8CAAAAgEmb5ncAAAAAAFBnjqT9hpX3m6rC6CpJukvSdcaY/SQdIMmW3OZIusYY808l9zUqjJ7KuH//oeS2tyRFqozv1ZLlt8v87T2eI2nJsP9jmqR/V2G02DRJAyW3ZVSBMWaJpKslzZPUJmmGCkmzUpP9vwAAAABg0khkAQAAAGh2A5JestYeUO5Ga+1mY8xqFcoCzpV0u7XWltz3KmvtrRN4Xjv2JlUZkPRra+2Hht/gjsjaIWmOpOfd1R2jPNZtkv5F0oettVuNMb2S9q5tuAAAAAAweZQWBAAAANDsHpf0J2PMJcaY3YwxU40x84wxh5Vsc5sKc0adrnfKCkrSDZK+5M1DZYzZ0xhzxjif91VJMWNMWw3+B0m6T9KBxphPGmOmuz+HGWPmWmt3SrpHUo8xZndjTKekc0Z5rHdJ2uQmsRarMC8YAAAAAAQOiSwAAAAATc1N8vxvFeaueknS65K+I2nPks3uVaGs4KvunFDefX8k6R8l/cAY8ydJz0j68Dif+leSnpX0B2PM65P8N2St/bOkFSrM4fWyCqX//lGFsoCS9LcqlP/7g6RbJN08ysN9TtKVxpg/S/p7SXdONj4AAAAAqAfzTsUMAAAAAAAAAAAAIDgYkQUAAAAAAAAAAIBAIpEFAAAAAAAAAACAQCKRBQAAAAAAAAAAgEAikQUAAAAAAAAAAIBAIpEFAAAAAAAAAACAQJrmdwCStPfee9t4PO53GAAAAAAAAAAAAGiwdevWvW6t3afcbYFIZMXjca1du9bvMAAAAAAAAAAAANBgxphMpdsoLQgAAAAAAAAAAIBAIpEFAAAAAAAAAACAQCKRBQAAAAAAAAAAgEAKxBxZAAAAAAAAAAAgPLZv365sNqutW7f6HQpCZObMmYrFYpo+ffq470MiCwAAAAAAAAAAVCWbzepd73qX4vG4jDF+h4MQsNbqjTfeUDab1f777z/u+1FaEAAAAAAAAAAAVGXr1q3aa6+9SGJh3Iwx2muvvaoexUciCwAAAAAAAAAAVG2sJNbOXXZcjzPe7RB+E0l8UloQAAAAAAAAAADU3NQpRvf87pUxtzvt/fs2IBr/9fT0KBKJ6KKLLprUNq2GEVkAAAAAAAAAAKCl7Ny50+8QME4ksgAAAAAAAAAAQKik02kddNBBOuecc9TV1aWPfvSjeuuttyRJDzzwgA455BAlEgl96lOf0rZt2yRJ8XhcV155pY488kj98Ic/1OrVq9Xd3a2FCxfqjDPOUD6fH/E8y5cv1xe+8AUtW7ZMc+fO1RNPPKHTTjtNBxxwgP7v//2/xe2++c1vat68eZo3b556e3uL66+66iq9//3v1wc/+EH97ne/K65/8cUXdfzxx+vQQw/V0qVL9fzzz9fplQo/ElkAAAAAAAAAACB0fve73+m8887Thg0b9O53v1v/+q//qq1bt+rcc8/VHXfcoWQyqR07duj6668v3mfmzJl65JFH9MEPflD/8A//oPvvv19PPvmkFi1apG9+85tln6etrU0PPfSQzj//fJ188sn61re+pWeeeUa33HKL3njjDa1bt04333yzHnvsMT366KP69re/raeeekrr1q3TD37wAz311FO655579MQTTxQf87zzztN1112ndevWadWqVfrc5z5X99crrJgjCwAAAAAAAAAAhM6cOXP0gQ98QJL0iU98Qtdee60+9KEPaf/999eBBx4oSTrnnHP0rW99SytXrpQkffzjH5ckPfroo0qlUsX7Dw4Oqru7u+zznHTSSZKkRCKhgw8+WPvuW5jT633ve58GBgb0yCOP6NRTT9Uee+whSTrttNP08MMPa9euXTr11FO1++67D3mcfD6v3/72tzrjjDOKz+GNGsNIJLKAOjLGFJettT5GAgAAAAAAAADNpfT6q/f3WNdhvWSTtVYf+tCHdPvtt4/5PDNmzJAkTZkypbjs/b1jx45Rn3N4jJK0a9cuzZo1S+vXrx/zuUFpQaCuvB0YSSwAAAAAAAAAqK3+/n719fVJkm6//XYdeeSROuigg5ROp/Xf//3fkqR///d/11FHHTXivocffrh+85vfFLd766239Pvf/35CcSxbtkw//vGP9dZbb+nNN9/Uj370Iy1dulTLli3Tj370I7399tv685//rJ/+9KeSpHe/+93af//99cMf/lBS4frx008/PaHnbgUksgAAAAAAAAAAQOjMnTtX3/ve99TV1aVNmzbpggsu0MyZM3XzzTfrjDPOUCKR0JQpU3T++eePuO8+++yjW265RWeddZa6urp0+OGH6/nnn59QHAsXLtS5556rxYsXa8mSJfrMZz6jQw45RAsXLtTHP/5xLViwQKeffrqWLl1avM+tt96qm266SfPnz9fBBx+sn/zkJxN+HZqdCcJIkUWLFtm1a9f6HQZQF+MZzgoAAAAAAAAAYfLcc89p7ty5Y253z+9eGXOb096/b9XPn06ndeKJJ+qZZ56p+r7wV7nPjjFmnbV2UbntmSMLAAAAAAAAAADU3M5ddlxJqp27rKZOGTmXFCCRyAICpXTiP0ZxAQAAAAAAAAiz8SanJpLEisfjjMZqEcyRBQSIl7wiiQUAAAAAAAAAAIksAAAAAAAAAAAABBSJLAAAAAAAAAAAAAQSiSzAB8aY4g8AAAAAAAAANCO7Y0dNt0NrmuZ3AEArstbKGMNcWAAAAAAAAACalpk2TVu+8pUxt9vziisaEE1jxONxrV27VnvvvbeOOOII/fa3v624bSQSUT6fr2s8a9eu1fe//31de+21Vd+3t7dX5513nnbffXdJ0gknnKDbbrtNs2bNqnGUo2NEFgAAAAAAAAAAQI2NlsSqpZ07d1a8bdGiRRNKYkmFRNZbb71V/PvnP/95w5NYEoksAAAAAAAAAAAQMul0WnPnztVnP/tZHXzwwVqxYoXefvttSdK3v/1tHXbYYZo/f75OP/30YjLm3HPP1ec//3kdccQRet/73qe77rpLUqGC1sUXX6x58+YpkUjojjvukCStWbNGy5Yt06mnnqrOzk6df/752rVrlyTp9ttvVyKR0Lx583TJJZeUjTESiUiSXnnlFS1btkwLFizQvHnz9PDDDxe3ueyyyzR//nwdfvjhevXVV0c8Rk9Pjz75yU/qmGOO0QEHHKBvf/vbxdiOPvpo/eVf/qUSiYS2bt2qv/qrv1IikdAhhxyiBx98sLjdiSeeKEl688039alPfUqHHXaYDjnkEP3kJz+RVEiEXXTRRUokEurq6tJ1112na6+9Vi+//LKOPvpoHX300ZIKo81ef/11SdI3v/lNzZs3T/PmzVNvb++Y78lkkMgCAAAAAAAAAACh88ILL+hv/uZv9Oyzz2rWrFm6++67JUmnnXaannjiCT399NOaO3eubrrppuJ9XnnlFT3yyCO67777dOmll0qS7rnnHq1fv15PP/207r//fl188cV65ZVXJEmPP/64/umf/knJZFIvvvii7rnnHr388su65JJL9Ktf/Urr16/XE088oR//+McV47ztttt03HHHFZ9jwYIFkgqJpcMPP1xPP/20li1bVkxSDbdhwwb97Gc/U19fn6688kq9/PLLxdiuuuoqpVIpfetb35IkJZNJ3X777TrnnHO0devWIY9z1VVX6ZhjjtETTzyhBx98UBdffLHefPNN3XjjjXrppZf01FNPacOGDTr77LP1+c9/Xvvtt58efPDBYlLMs27dOt1888167LHH9Oijj+rb3/62nnrqqVHfk8kgkQUAAAAAAAAAAEJn//33LyaFDj30UKXTaUnSM888o6VLlyqRSOjWW2/Vs88+W7zPKaecoilTpqizs7M4AuqRRx7RWWedpalTp+ov/uIvdNRRR+mJJ56QJC1evFjve9/7NHXqVJ111ll65JFH9MQTT2j58uXaZ599NG3aNJ199tl66KGHKsZ52GGH6eabb1ZPT4+SyaTe9a53SZLa2tqKo6VK4x/u5JNP1m677aa9995bRx99tB5//PFibPvvv3/xf/jkJz8pSTrooIPkOI5+//vfD3mc1atX6+qrr9aCBQu0fPlybd26Vf39/br//vt1/vnna9q0aZKk2bNnj/q6P/LIIzr11FO1xx57KBKJ6LTTTiuOMqv0nkwGiSygBowxxR8AAAAAAAAAQP3NmDGjuDx16lTt2LFDUqGE4L/8y78omUzqiiuuGDIyqfQ+1tohv8sZfs3XGDPq9uUsW7ZMDz30kNrb2/XJT35S3//+9yVJ06dPLz5+afzjiUGS9thjjxH/y2istbr77ru1fv16rV+/Xv39/Zo7d66stVVd2x7tuSq9J5NBIguogfHs8AAAAAAAAAAA9ffnP/9Z++67r7Zv365bb711zO2XLVumO+64Qzt37tRrr72mhx56SIsXL5ZUKN/30ksvadeuXbrjjjt05JFHasmSJfr1r3+t119/XTt37tTtt9+uo446quLjZzIZvec979FnP/tZffrTn9aTTz5Z1f/zk5/8RFu3btUbb7yhNWvW6LDDDiv7P3j/6+9//3v19/fr/e9//5BtjjvuOF133XXF69heOcAVK1bohhtuKCadNm3aJEl617vepT//+c9ln+vHP/6x3nrrLb355pv60Y9+pKVLl1b1P1WDRBYAAAAAAAAAAGgaX/3qV7VkyRJ96EMf0kEHHTTm9qeeeqq6uro0f/58HXPMMfrGN76h9773vZKk7u5uXXrppZo3b572339/nXrqqdp333319a9/XUcffbTmz5+vhQsX6uSTT674+GvWrNGCBQt0yCGH6O6779aFF15Y1f+zePFifeQjH9Hhhx+uyy+/XPvtt9+IbT73uc9p586dSiQS+vjHP65bbrmlODrKG211+eWXa/v27erq6tK8efN0+eWXS5I+85nPqKOjo/ga3HbbbZKk8847Tx/+8Id19NFHD3muhQsX6txzz9XixYu1ZMkSfeYzn9EhhxxS1f9UDROEESSLFi2ya9eu9TsMYFIqDSmt1XoAAAAAAAAACIrnnntOc+fOHXO7LV/5ypjb7HnFFbUIqebWrFmjVatW6b777vMthp6eHkUiEV100UUTuv/dd9+te++9V9/73vdqHNnElfvsGGPWWWsXldt+WkOiAgAAAAAAAAAALcXu2DGuJJXdsUNmGumKWrv33nt12WWX6bvf/a7foUwKI7KAGmFEFgAAAAAAAIBWMd4RWcBwjMgCAAAAAAAAgBrx5paRROdjAPDBFL8DAAAAAAAAAICg8pJXJLEAwB8ksgAAAAAAAAAAABBIJLIAAAAAAAAAAEDNjXccI+MdMRoSWQAAAAAAAAAAoOaMpMw4fkylBxjDtddeq7lz5+rss8/WmjVrtOeee2rBggVasGCBrrzyyhr8B7Xzta99bVzbxeNxvf7665KkI444op4hhcY0vwMAAAAAAAAAAACo1r/+67/qP//zP7X//vtrzZo1Wrp0qe677z6/wyrra1/7mr785S9XdZ/f/va3dYomXBiRBQAAAAAAAAAAQuX888/X//zP/+ikk07SP//zP4+67fe//311dXVp/vz5+uQnPzni9jfffFOf+tSndNhhh+mQQw7RT37yE0nSkiVL9Oyzzxa3W758udatW1dx+1tuuUWnnXaajj/+eB1wwAH64he/KEm69NJL9fbbb2vBggU6++yzJUmnnHKKDj30UB188MG68cYby8YdiUQkSbt27dLnPvc5HXzwwTrxxBN1wgkn6K677pJUGMF1xRVXaOHChUokEnr++eereRlDgUQWAAAAAAAAAAAIlRtuuEH77befHnzwQX3hC1+QJPX19Wn+/Pn68Ic/XExAPfvss7rqqqv0q1/9Sk8//bSuueaaEY911VVX6ZhjjtETTzyhBx98UBdffLHefPNNnXnmmbrzzjslSa+88opefvllHXrooRW3l6T169frjjvuUDKZ1B133KGBgQFdffXV2m233bR+/XrdeuutkqTvfve7WrdundauXatrr71Wb7zxRsX/9Z577lE6nVYymdR3vvMd9fX1Dbl977331pNPPqkLLrhAq1atmvyLGzAksoA6ceJxGWOKywAAAAAAAACA+li4cKEymYyefvpp/d3f/Z1OOeUUSdKvfvUrffSjH9Xee+8tSZo9e/aI+65evVpXX321FixYoOXLl2vr1q3q7+/Xxz72Mf3whz+UJN15550644wzRt1eko499ljtueeemjlzpjo7O5XJZMrGe+2112r+/Pk6/PDDNTAwoBdeeKHi//bII4/ojDPO0JQpU/Te975XRx999JDbTzvtNEnSoYceqnQ6Pf4XLSSYIwuok/5MRmlrJUlxM9HpCgEAAAAAANAIpuT6jXWv6QAIj3e/+93F5RNOOEGf+9zn9Prrr8taO+T7XY61Vnfffbfe//73j7htr7320oYNG3THHXfo3/7t30bd/rHHHtOMGTOKf0+dOlU7duwY8Zhr1qzR/fffr76+Pu2+++7FZNho8Y3Ge85Kzxd2jMgCAAAAAAAA0PK8C8UksYBw+sMf/lD8/j7++OPatWuX9tprLx177LG68847i6X7Nm3aNOK+xx13nK677rri/Z966qnibWeeeaa+8Y1vaMuWLUokEmNuX8n06dO1fft2SdKWLVsUjUa1++676/nnn9ejjz466n2PPPJI3X333dq1a5deffVVrVmzZsznayYksgAAAAAAAAAAQKjdddddmjdvnubPn6/Pf/7z+sEPfiBjjA4++GBddtllOuqoozR//nz9n//zf0bc9/LLL9f27dvV1dWlefPm6fLLLy/e9tGPflQ/+MEP9LGPfWxc21dy3nnnqaurS2effbaOP/547dixQ11dXbr88st1+OGHj3rf008/XbFYTPPmzdNf//Vfa8mSJdpzzz2reHXCzQShh8GiRYvs2rVr/Q4DmBRjzJAeO8aYIaUFh3/Xhm8/1noAAAAAAADUF9drgPF77rnnNHfu3DG3Kz9D1FDO5MNpevl8XpFIRG+88YYWL16s3/zmN3rve9/rd1gTUu6zY4xZZ61dVG575sgCxqNcDVUOXgAAAAAAAeHN/cGFdgBAkFiNL0llJY0+ixVOPPFEbd68WYODg7r88stDm8SaCBJZAAAAAAAATaCaJBaJLwBAI4w3OUUSa2ytNi9WKebIAsbD2pE/ExSPO8UTBmOM4vF3+iTMic8prveWAQCoN2NMsW0CAACtgyQWAAAIAxJZwCTFY7Hixb94LDbm9plMvwYHNxR/Mpn+4m3ZTFa9m3rVu6lX2Uy2bjEDAFCKi1gAAIRDPp9XX1+f8vm836EAAAA0DKUFgUnKbNyozT09kqRZ7m8AAAAAAGopn8+rs7NTuVxO0WhUqVRKkUjE77AAAADqjhFZAAAAAIDAYeQJMFQymVQul1M+n1cul1MymfQ7JCC0vNLaky2vXavHAZqZtbtquh1aE4ksAAAAAECgeCNPVqxYoc7OTpJZgKREIqFoNKpIJKJoNKpEIuF3SEBoeaW1J1tiu1aPAzQzY6Zo+/bkmD/G1C5V8ZnPfEapVGrUbV577TUtWbJEhxxyiB5++GGdcMIJ2rx5c8Xt4/G4Xn/99ariWL58udauXStJ+trXvlbVfTEUiSwAAAAAQKAw8gQYKRKJKJVKafXq1ZQVBABgFN/5znfU2dk56jYPPPCADjroID311FNaunSpfv7zn2vWrFl1i4lE1uSQyAIAAAAABAojT4DyIpGIuru7SWIBCA1KL6Ke3nzzTX3kIx/R/PnzNW/ePN1xxx2Sho6Euummm3TggQdq+fLl+uxnP6u//du/1fr16/XFL35RP//5z7VgwQK9/fbbxRFXlR5Tkq677jotXLhQiURCzz///Ih43n77bZ155pnq6urSxz/+cb399tuSpEsvvVRvv/22FixYoLPPPlvf+MY3dO2110qSvvCFL+iYY46RVEiufeITn6jraxZWYyayjDHfNcb80RjzTJnbLjLGWGPM3iXrvmSM+W9jzO+MMcfVOmAAAAAAQHNj5AkAAM2D0ouol1/84hfab7/99PTTT+uZZ57R8ccfP+T2l19+WV/96lf16KOP6pe//GUx+bRgwQJdeeWV+vjHP67169drt912G9dj7r333nryySd1wQUXaNWqVSPiuf7667X77rtrw4YNuuyyy7Ru3TpJ0tVXX63ddttN69ev16233qply5bp4YcfliStXbtW+Xxe27dv1yOPPKKlS5fW/HVqBuMZkXWLpOOHrzTGzJH0IUn9Jes6JZ0p6WD3Pv9qjJlak0gBAAAAAC2DkScAAAAYTSKR0P33369LLrlEDz/8sPbcc88htz/++OM66qijNHv2bE2fPl1nnHHGpB7ztNNOkyQdeuihSqfTI+770EMPFUdUdXV1qaurq+xzHHrooVq3bp3+/Oc/a8aMGeru7tbatWv18MMPk8iqYMxElrX2IUmbytz0z5K+KKk0pX6ypB9Ya7dZa1+S9N+SFtciUAAAAAAAAABA+FFyELVw4IEHat26dUokEvrSl76kK6+8csjtExkNONpjzpgxQ5I0depU7dixo+z9x/O5nj59uuLxuG6++WYdccQRWrp0qR588EG9+OKLmjt3btUxt4IJzZFljDlJ0kZr7dPDbmqXNFDyd9ZdV+4xzjPGrDXGrH3ttdcmEgYQXMbISnKMkeMuAwAAAAAAACig5CAm6+WXX9buu++uT3ziE7rooov05JNPDrl98eLF+vWvf61cLqcdO3bo7rvvnvRjjmbZsmW69dZbJUnPPPOMNmzYULxt+vTp2r59+5BtV61apWXLlmnp0qW64YYbtGDBAhK8FUyr9g7GmN0lXSZpRbmby6wru0ey1t4o6UZJWrRoEXstAAAAAAAAAAAwLslkUhdffLGmTJmi6dOn6/rrrx9ye3t7u7785S9ryZIl2m+//dTZ2Tmi/GC1jzmaCy64QH/1V3+lrq4uLViwQIsXv1Os7rzzzlNXV5cWLlyoW2+9VUuXLtVVV12l7u5u7bHHHpo5cyZlBUdhxpP5NsbEJd1nrZ1njElIekDSW+7NMUkvq1BC8K8kyVr7dfd+/yWpx1rbN9rjL1q0yK5du3ai/wPgK2OMNvf0SJJm9fQUe5MYY5R2l+PGDFk/OPhONr6trWvIbb2beiVJK2evpGcKAKBhTElbBQAAwqfatpy2H62u0negVutRwOvW3J577rlxlcLbvj055jbTpydqEdII+XxekUhEO3bs0KmnnqpPfepTOvXUU+vyXBi/cp8dY8w6a+2icttXPSLLWpuU9J6SB09LWmStfd0Yc6+k24wx35S0n6QDJD1e7XMAAAAAqK98Pq9kMqlEIqFIJOJ3OAAAAACakLW7xpWksnaXjJnQTEij6unp0f3336+tW7dqxYoVOuWUU2r+HKi/MRNZxpjbJS2XtLcxJivpCmvtTeW2tdY+a4y5U1JK0g5Jf2Ot3VnDeAEAAABMUj6fV2dnp3K5nKLRqFKpFMksAAAAADU33uRUPZJYkrRq1aq6PC4aa8xElrX2rDFujw/7+ypJV00uLAAAAAD1kkwmlcvllM/ni393d3f7HBUAAABanTFGkig7CGCI+qQ5AQAAAARWIpFQNBpVJBJRNBpVIlGfevQAAExWPp9XX19fsfMFgOZHEgvAcFXPkQUAAAAg3CKRiFKpFHNkAUALCPPoBkrhAgAAiRFZAAAAQEuKRCLq7u7mgiAAtIAwJrGkoaVwc7mcksmk3yEBAKq0w+6o6XZoTYzIAgAAAAAAQOB4pXAlUQoXAEJqmpmma3LXjLndhdELGxBNZUcccYR++9vf1vQx16xZo1WrVum+++7Tvffeq1QqpUsvvbSmzzFZy5cv16pVq7Ro0SKdcMIJuu222zRr1iy/wxqBRBYAAAAAwDfVlj3L5/OUxQRaBKVwAQCNUusk1nAnnXSSTjrppEk9xs6dOzV16tQJ3z6Wn//85xO+b71RWhAAAAAA4JtqSp558+WsWLFCnZ2dyufzdYwMQBBQChcAUMmbb76pj3zkI5o/f77mzZunO+64Q5L0i1/8QgcddJCOPPJIff7zn9eJJ54oSerp6dGqVauK9583b57S6bQkFduZXbt26XOf+5wOPvhgnXjiiTrhhBN01113SZLi8bhef/11SdLatWu1fPlySdLjjz+uI444QocccoiOOOII/e53vxsR6y233KK//du/lST98Ic/1Lx58zR//nwtW7ZMUiEJdfHFF+uwww5TV1eX/u3f/k1SYVTX0Ucfrb/8y78sOzI5Eono7//+77VkyRL19fXpP/7jP7R48WItWLBAf/3Xf62dO3dKki644AItWrRIBx98sK644oqyr2fp//fVr35VBx10kD70oQ/prLPOKr5uy5cv1yWXXKLFixfrwAMP1MMPPzzm+1QLJLIAAAAAAKHAfDkAAADw/OIXv9B+++2np59+Ws8884yOP/54bd26VZ/97Gf105/+VA8//LD+8Ic/VPWY99xzj9LptJLJpL7zne+or69vzPscdNBBeuihh/TUU0/pyiuv1Je//OVRt7/yyiv1X//1X3r66ad17733SpJuuukm7bnnnnriiSf0xBNP6Nvf/rZeeuklSYVE2VVXXaVUKjXisd58803NmzdPjz32mPbaay/dcccd+s1vfqP169dr6tSpuvXWWyVJV111ldauXasNGzbo17/+tTZs2FAxvrVr1+ruu+/WU089pXvuuUdr164dcvuOHTv0+OOPq7e3V1/5ylfGfH1qgdKCQFAYIytJs1dKkvytCgsAAAAED/PlAAAQTNWWCgZqIZFI6KKLLtIll1yiE088UUuXLtX69eu1//7764ADDpAkfeITn9CNN9447sd85JFHdMYZZ2jKlCl673vfq6OPPnrM+2zZskXnnHOOXnjhBRljtH379lG3/8AHPqBzzz1XH/vYx3TaaadJklavXq0NGzYUR39t2bJFL7zwgtra2rR48WLtv//+ZR9r6tSpOv300yVJDzzwgNatW6fDDjtMkvT222/rPe95jyTpzjvv1I033qgdO3bolVdeUSqVUldXV8XX4OSTT9Zuu+0mSfrf//t/D7ndi/nQQw8tjmirNxJZAAAAAIBQYL4cAACCiyQWGu3AAw/UunXr9POf/1xf+tKXtGLFCp100knFxOpw06ZN065du4p/b926dcQ2o32OS+9fet/LL79cRx99tH70ox8pnU4XSw5WcsMNN+ixxx7Tz372My1YsEDr16+XtVbXXXedjjvuuCHbrlmzRnvssUfFx5o5c2ZxXixrrc455xx9/etfH7LNSy+9pFWrVumJJ55QNBrVueeeW/Z/94z1XZ4xY4akQhJtx44do25bK5QWBILCWhlJ12zq1TWbelV+dwsAAACEkzGm4kWFajBfDgAAACTp5Zdf1u67765PfOITuuiii/Tkk0/qoIMO0ksvvaQXX3xRknT77bcXt4/H43ryySclSU8++WSxdF+pI488Unfffbd27dqlV199VWvWrBly/3Xr1kmS7r777uL6LVu2qL29XVJhLqyxvPjii1qyZImuvPJK7b333hoYGNBxxx2n66+/vjia6/e//73efPPNql6PY489VnfddZf++Mc/SpI2bdqkTCajP/3pT9pjjz2055576tVXX9V//ud/jvo4Rx55pH76059q69atyufz+tnPflZVHPXAiCwAABBIpRc76dlXHcp6AAgia21NElkAAACAVJg/9eKLL9aUKVM0ffp0XX/99Zo5c6ZuvPFGfeQjH9Hee++tI488Us8884wk6fTTT9f3v/99LViwQIcddpgOPPDAEY95+umn64EHHtC8efN04IEHasmSJdpzzz0lSVdccYU+/elP62tf+5qWLFlSvM8Xv/hFnXPOOfrmN7+pY445Zsy4L774Yr3wwguy1urYY4/V/Pnz1dXVpXQ6rYULF8paq3322Uc//vGPq3o9Ojs79Q//8A9asWKFdu3apenTp+tb3/qWDj/8cB1yyCE6+OCD9b73vU8f+MAHRn2cww47TCeddJLmz58vx3G0aNGi4mvgFxOECxyLFi2ywycMA8LCGKPNPT2SpFk9PcWLhsYYpd3luDFD1g8OvjOZXltb15Dbejf1SpJWzl7JBUgALc+U7D8xfhN53XitATRCpX0N+yBg8qr9fvG9Q6ur1XeG71IBr2dreu655zR37twxt7smd82Y21wYvbAWIY2wZs0arVq1Svfdd9+475PP5xWJRPTGG29o8eLF+s1vfqP3vve9dYkvqLzX4K233tKyZct04403auHChWPez8vzLFq0aNTtyn12jDHrrLVl78iILGAyjJGVJDeRNWYz623f9s5EemFsmhklAQAAAAAAWt2c+BxJheskMSemgfSAzxFVRtUG+GWH3TGuJNUOu0PTTDDSFSeeeKI2b96swcFBXX755S2XxJKk8847T6lUSlu3btU555wzriSWZ6wk1kQE45MxCdXuhNlpAyNVm5jyysLwPQIAAAAAAK0qm8kOqawTdFzHgR/Gm5yqVxJr+fLlWr58eVX3KZ0Xq1XddtttfocwxBS/A6iFanfC7LRRM9bKSNrS06MtPT0as+K/u/32wQ3FnyDMEuB9J/huAAAAAACAZhePxSQVOvZ6y5LkxOPF9d6yJMXjzjvbu8sAgMYJ/YgsAAAAAAAAABivzMaNQ+Y79/RnMkPmOy9un+kvznfeVjJdBIB3KjcB41U6mGK8FfSaYkQWAAAAAAAAAABonJkzZ+qNN96gyhPGzVqrN954QzNnzhyybiyMyAIAAKGSz+eVTCaVSCQUiUT8DgcAAAAAgJYUi8WUzWb12muv+R0KAuL111/Xc889N+o2M2fOVKykrOt4kMgCAAChkc/n1dnZqVwup2g0qlQqRTILAAAAAAAfTJ8+Xfvvv7/fYSBAOjs76zJCj9KCAAAgNJLJpHK5nPL5vHK5nJLJpN8hAQAAAAAAoI5IZAEAgNBIJBKKRqOKRCKKRqNKJBJ+hwQAABA6c+JzJBUmWPeWAaDWnHhcUmFf4y1LUjzuFNd7ywAwGkoLAgCA0IhEIkqlUsyRBQAAUKL0YnGH4yiTTksaerHYcTqUTmckSdlMVr2beiVJK2evbHC0AFpFfyajtFtiLG5McX0m06/BwQ2SpLa2Ll9iAxAuJLIAAECoRCIRdXd3+x0GAABAYHCxGAAANIopOdYY73xY3n0mOn8WpQUBAAAAAAAAAAAwJi8ZVW1SaqJJLIlEFgAAAAAAAAAAAAKKRBZQJx2Oo7gxirs1ygEAaIR4LCbJnTjZXfYYY4aUAAAAAAAAAAi6pp0ja7I1F4HJ8ibXNcYUlwEAqLfMxo3a3NMjSZrl/i7FsREATAznmADQ5IyRdX9Lkh2+3p1nbsT62SslSRc2JsqmNic+R1KhzY05MQ2kB3yOCEBQNG0iS+IEAwAAYCzxuKNMpr+4nE5nfI4IAILJWsuoVgBoBl4Cyu30xdXD4Mhmsurd1CtJWukmCAFAavJEFgAAAEaXyfRrcHCDJKnN7WUKAAAAtBy3w0La7Rgf9xJe7vrSY+bS9aWJF5JiAFAfJLKASXLa24ulm5z2dn+DAQCghiijBQAAgKbjJqBKy3FztAsAwTbF7wCAsEtns8ULfOls1udoAAConbAksPL5vPr6+pTP5/0OBQCAuorHYjLGyBijeCzmdzgAAAANwYgsAAAAhFY+n1dnZ6dyuZyi0ahSqZQikYjfYQEAUBeZjRuHjCIBAABoBYzIAgAAaAFOPC6pUC7QW24GyWRSuVxO+XxeuVxOyWTS75CAUGJkIwAAAICgYkQWAABAC+jPZIZMXN0sEomEotGoJCkajSqRSPgcERA+jGwEADSlcse8ISmdDQAYikQWAAAAQisSiSiVSimZTCqRSHDxHZiA0pGN3t/d3d0+RwUAAELNGFn3tyTZ4evbuoauB4BRUFoQAACgWbgnhXv29GjPnp6WOSmMRCLq7u4miQVMkDeyMRKJTG5kozEjf8bgxOMy7nZhLXtqjCn+DwAmhvKmqAtrR/40Ob++S/FYTFKhTfSWAaCWGJEF1JF3QmuMkXUPmBynQ21urxPvbwAAgmZOfI6ymWxxeSA94HNEAOrFz5GNzVD21FpLIguYBMqbArXh53cps3GjNvf0SJJmub/lto+l7bwtWT84uEGS1NbW1TId8ABMHCOygDqy1hZ/POl0pvi3tVbpdMav8CZsTnyOpEKCzlsGAASAtTKStvT0aEtPj8a8rOqeTE5v69L0YSeQ2UxWvZt61bupt5jQAtC8ajKysQV7vgOYvNLyprlcTslk0u+QgFDiuwSgmTEiC0BFpT1LS5Nx3sVNSVo5e2WDo0IjeO+95QIUAADwQTzuKJPpl1SoYBDGzl9AzXmjGdzRDiPmmwnpPDReeVNJkytvCrQ4vksAmhmJLAAVeWVSSGa0HkrkAAFX7vs5kX01ZT0ABFQm0z9k3xRGdAzChNWqnQ8JP8ubAs2E71J90J4DwUAiCwAAAACAGqNjEGrO/UyVzkNTOt/MuOeh8W53q2tc2Mj/oQKvvCmAyeG7VHu050AwkMgCAMAn+Xye3nKYGHoDAmgGIS+HBtQN7TwAAMAQU/wOAACAVpTP59XZ2akVK1aos7NT+Xze75AAAKibeCxW7M0cj8V8jgZocdbKSLpmU6+u2dQrxhkAAICgI5EFAAi8fD6vvr6+pkr2JJNJ5XI55fN55XI5JZNJv0MCAKBuMhs3anNPjzb39CizcWNhpXsxPWOtMu5y6frtgxu0fXADF9kBAACAEHDicUmFueW8ZUmKx53iem+5WpQWBAAEmjdyKZfLKRqNKpVKNUUZvkQioWg0KkmKRqNKJBI+RwQAAAAAQGvyRo5byrsCBeXmhhvj+9GfyQyZs9OTyfQPmbNzIhiRBQAItImMXArDCK5IJKJUKqXVq1c3TXIOAAAAAIAwIoEFBFtLjciaE58jqZBhjzkxDaQHfI4IADCWakcuhWkEVyQSUXd3t99hAAAAAAAwugmMzgAQYgH7frdUIiubyap3U68kaeXslb7GAgCNFOYh8t7IpWQyqUQiMWZSqnQEl/c3ySIAAAAAAFArYb7OAoQRpQUBoAVUOrAyxhQPvoLMG7k0npFV3giuSCTC3FMh4X0Ow/BZhL/CUDYUAAAAaErWjvxpYSSwgMZqqRFZAIChrLVNlzyodgQX/Od9DjkRwGjCVDYUAABUxigGoMkYIytJPT2SJL7ZAOqBRBYAOfG4pMIJRYfjKJNOS5Licae43nE6lE5nfIoQqA5zTwHNh7KhQIhxgQvAMCSx4DenvV2z3HbJaW8vru9wHMXdZGuH47yzvdOhtrau4jLqwDtecKeDudDPWAAEDoksoIWUjrwpPXHoz2SUdv+Ol2yTyfRrcHCDJBUP2AAA8INXNlQSZUMBAIGVz+epDACEQDqbLVsVIpNOl12fTmeoIlGJW2Fjs5sYnNXTQ6cVoMnFYzFJ7uCH9nals9m6P+eYc2QZY75rjPmjMeaZknX/zxjzvDFmgzHmR8aYWSW3fckY89/GmN8ZY46rU9ySho4i8ZYBVOYdcHHgBQAtxu3d6Bgjx+vpGDJe2dDVq1dTVhAIG2tlJG3p6dGWnh41V1Fj4B1eGdwVK1aos7OTOR0BoBru8cI1m3p1zaZejheAAMts3KjNPT3a3NOjzMaNDXnO8YzIukXSv0j6fsm6X0r6krV2hzHmHyV9SdIlxphOSWdKOljSfpLuN8YcaK3dWduwCyqNIgFQRwz1BgD4hLKhAIAgowwuAAxFqUYAtTJmIsta+5AxJj5s3eqSPx+V9FF3+WRJP7DWbpP0kjHmvyUtltRXm3ABAABQNbfcR2kHoDCOygJQHa+sNKPxgcagDC4ADEWpRgC1Uos5sj4l6Q53uV2FxJYn664bwRhznqTzJKmjo7aZ93jc8Z5DjtOhdDpT08cHWpp7MbR3U68kaeXslVwMBQAACCguEAGN45XBreccWU57u2a589A47e9cbmHUAwAAaGaTSmQZYy6TtEPSrd6qMpuVPXOy1t4o6UZJWrRoUU3PrjKZfg0ObpCk4gEbAAAAAABAPdW7DG46my07ioFRDwD8VCnJDgC1MuFEljHmHEknSjrWvnNElJU0p2SzmKSXJx7eqAEUMmReuYzh690E1oj1zOsDAAAAAAAAADVRKckOALUyZSJ3MsYcL+kSSSdZa98queleSWcaY2YYY/aXdICkxycfZvgZY4o16gEAAADAL5ybAAAAAAiTMRNZxpjbJfVJer8xJmuM+bSkf5H0Lkm/NMasN8bcIEnW2mcl3SkpJekXkv7GWruzFoGOONmyVkZSxlpl3OXS9dsHN2j74IYR66/Z1KtrNvWWrYFYT9X2SODkEvUQj8UkFT5f3jIAAABaDz2m62tOfE7xfG5OfM4YWwMAAAAh51bEc4yR41XHK1k/va1L09u6ys9DNQ5jlha01p5VZvVNo2x/laSrJhjPWLHU42EDyVpLIgs1l9m4UZvdmsVe7WIAAAAAtZXNZNW7qVeStNItbw8AAEYXc2LFdjPm0AEbwDsmVFoQwOR4SUqSlQAAAMD4eSOdjDENHenkxOPFY3cnHm/Y8wIA0EoG0gOSCh38vWUAIVFtBb0qjTkiC0DttdLoQgAAAKBW/Brp1J/JKO0ew8fpjIYmEJZRD3Pic5TNZCUV4uTCNgAArSkUI7KY1wcAAAAA0AjVzFccjzvFbeNxp55hjZsXP9Ufmttk39+wjHrwkte9m3qLCS0AANB6QjEii3l9AAAAxsdpby8eLznt7f4GAwAhVM18xZlMvwYHN0iS2tq66hnWuHnxUwWiefHeohXk83klk0klEglFIhG/wwmc0naKfULjlY4WnROfE+gOAUCzCEUiC0AdGSPr/pYkO3y9e0LOYREAhEM6m+UCJgAAAEIrn8+rs7NTuVxO0WhUqVSKZNYwdFrwl1+ljoFWForSggAAAKgPx+lQW1uX2tq65DgdfocDAACAFpdMJpXL5ZTP55XL5ZRMJv0OKfTmxOdIKozk8pbrodKIZsrdApgsRmQBrc7txVM6ebUtWV9aKoV+PvAOPun1BTSPdDojqfD99pYBwG9ekt1bBjA+lUZoMHIDYZJIJBSNRiVJ0WhUiUTC54jeORcO63epESOIKr0uYXy9AAQPiSygVXgJKnfeFA4jMBHVzBkBAAAwlg7HUdw9tuhwnOJ6kuxA9YJ2EZlOcJioSCSiVCrlyxxZlRJWlT7HMSdWTAzFnFjd40NjxeOOMpn+4jLHJIB/gp/I4uI7AAAAADSlTDotqXDB0Fv2UzwWU2bjxuJyOput/kG8c1j3wuaFNYuuPko7KZFwaD31Hl3CZwoTFYlE1N3dXbfHrzZhVclAeiC0o7Qwtkymf0ilIgD+CX4iC0BtuCNpNrtJ4Vk9PRNODE+bMY0eRwAAAGg6mY0bhxwvtwJvxD0XYVsP7zlaWVg+/3Q2aAwnHld/JlNcDkLnGgBDBT+RVcOL7wBqY/vW7X6HgBqodKDG0HmgOVUq3wUAqDH3HLZ0LhLOYQEAE0Fng8boz2SGzB0/qpCNvAaaRfATWQCASalUIqfSgRpD54HmlEmnOQkGEG61unBU7gKVtZS1BwAAAAJqit8BAADqyyuRs7mnp5jQAgAAzSGfz6uvr0/5fN7vUABgTE48LqlQLs1bBoBGMsYMKdlYNWtlJF2zqVfXbOrVJB4JQBUYkQUAAAAAIZTP59XZ2alcLqdoNKpUKqVIJOJ3WPVTq5J9lUamUtYeqLtKVSFKy5s7TgflzQHUFVUqgPBpqURWzIlppVuGIubE/A3G5fUAYAcKANVj4lsAQCtLJpPK5XLF0VjJZFLd3d0+R1We096uWW6CyGlv9zcYAIFDeXMAAEJilHLclebmdpyOYvvuOB0TetqWSmQNpAcCNzeEN2kjgNaVz+eVTCaVSCSauxd1HTDxLQCglSUSCUWjUUlSNBpVIpHwOaLKvDk6jTHF5SAi4QYAAABMTKW5udPpzKSv34UikcXJBIBm1XIlgQAAQM1EIhGlUqnQd4ip1LHPjw5/QU6yAYFT7jtKBzMAAJqbT+W4pzTgOSbNO5mw1g45sfCGqsWNKTtUra2ta8JD1QCEXxgmPy8tCZTL5ZRMJv0OCQAAhEgkElF3d/ekk1hz4nOKk5/Pic+pUXTjY60t2zuz0noAAAAArSUUI7IqqedQtVpy4nH1ZzLF5Uw67W9AwDD1rF/ql7CMdKpZSSB6QwKhwhyZAIImm8mqd1OvJBXnFYbLmwfA23f7GgwQIBzHAACABgl1Iiss+jMZpd0DvDjzYcFHlcp0hiUpXI2wTH7eLCWBAFQvjPtWAEAJL8Hldvxir96cmM8WAACgPrxKEMYYxZzYqNuSyAJaSDqbDW1iqlphmvzcKwk0KS3wngIAAPjCnQegtHMiR16tISxVHgAAAMKomqoQoZgjC0AVjBn504K8kU6rV6/mhBMAAsqbjwcAQslaGUnbBzdo++AGsTcLt3Lz6zKf7cTFY4Ve1caY4nLV3KTxhbNX6sLZKxueQA7DnMsAALSK4IzIYn4XADVWk5FOAIC6se4oB9QXZbEAYHSVRl6FqcpD0GQ2btRmt6y9V94+TBiNBzSn0iS7096udDbrc0QAxis4iSwAtUECGAAAuLgQBwBjqzS/LvPZ+szt8FJacqhRZ7thmXMZCLtGT39RVZKduTCBQAlOIouL7wgxrzd5q8w/hRDxDrzcA7TJfDrnxOcom8kWlwfSA5ONDgBQZ1yIA6rHKMbWM9rIK6o8tCZG4wH1x/UzANUITiILCDEaX7SCaiZgBBBc5TpdjCjv5yXB3e/6hQ2JDPXAhTigOoxibE2MvGoQ7/jCPe4I8lk0nwkA3qjQwcENkqS2tq5A77eAIKk02GMyg0CmTDaoRqo0h0Kt1jdaPO4UY4nHHZ+jQSsoHTmGFuFOQr6lp0dbenqYhBxocdbasgeNldaHwZz4HBljZIzRnPgcv8MJHO9C3OrVq7kgD4xD6SjGXC6nZDLpd0g14+0rS88FvH2ot9zKvJFX7CdrwE1Y7dnToz17esa+8OtuP72tS9MDdKGYzwTQItx9kGOMHC/hDmDC6nXdITQjsir9k7Va74dMpn9IVh+otyB9/uGzSr0hqQGNeimXQGefFFw+zkkhvdPhYjztFqNFx0ZZrNbkxOOSCt+nDsdRJp2W9E4HOmOMHKdD6XSmYTGFoTNVpVGMHY6juBt/h/NOJ0TH6SieyzlOR4OjrY519+2l+1b2oWgo9zOYdj+D8Sa7YExZUqB1xJxYsd2MOTF/gwFaRGgSWQAAAGgN3sVWYDSlnxE664zUn8kMuVjs8bMzXRjep0rlxLxEoDGmuCypmAg0xjQ0KQgEmtuOb3bn6Z011qisJijfRVlSIMQmkGRnznCg8UJVWjAMhpdqmIgwlXeoxf8LwAduycGMtcq4y6Xrtw9u0PbBDZQiRO1YO/IHACbBS4qEITmCcKGcGIBqNXNZUgAAgoARWTVWix7EYSrvQI9pAEBQMDoDrS7s34Gwxw+UouQQ0FoqlSUFAsEbYeS2Sxf6GQsATBCJLADA2DjwRQiUm/sDaCVh/w6EPf7RVDPvG5qDV3LIGEP5IaAFVCpLCkxWPFboDGGMkdPernQ2K6nyXJgzZ87Qtm2DhW0aPBdmYFSan9m7ruGWPeWoDAgXElkAACCQKp2cAUAYkcQC0Eqc9nbNci8WO+3txfUdjlOct6/DcfwIrW68sqRALWU2bhwy35yn0lyY27YNjpwL0+0sVFr9iaMSAGFDIqvevGy/1wvT12AAtKJKJ5FV4cAXPqh0cobmEI/FlNm4sbjs9S4F4IMQjbymZB8QDulstuwo20w63bSjbwEERKX9i3tdozQxyJ4ICA8SWQDQ5LyLw8YYLhQDCIxKvUsBYDSU7ANaC8lrAAAgkciqPzfbX9qj3BuhZSXJHeZLDwAAAAAEgSkZAUmP+RbByOtxMRVGB1daD2DySF4DaIRKZU8dp6NYotFxOnyJDUABiaygCVFZDwAAgFpz4nH1ZzLFZeZGazzrJjVIYgFDVfpO8F0BJo+LxUAZ3jVCt3oBrU39eOccxpgh5x/pdKa43lsG4I8pfgfQTOKxWLE3Xjw2xpB3a2UkbR/coO2DG0QfPgAAgHfmRktbW0xoSVI87sgYI2OM4vHmmhweo/Ped0a9AEOV+2448XjxbyceL6739qHeMhA03gViay0Xi4GxuAkuxxg5XrKrZP30ti5Nb+si8VWGN4f4rJ6eic8hDsAXjMiqoZrM9UBZDwAA0Owm0Ls0k+nX4OAGSSr22G6UfD6vZDKpRCKhSCTS0OcGI8SAcko7TpZeiPM6A0gqlkiS/N2HAgAmyD0GKr3W2CpHQ/U69mPecCC8SGQBAAAAFeTzeXV2diqXyykajSqVSpHMQvCVzMsraURPbebpDb+adKLEpDCfIADfuAmu0o4LtmR9aceFMO6d2KcCKIfSggi0fD6vvr4+5fN5v0MBAAC14pZY3tLToy09PYEusZxMJpXL5ZTP55XL5ZRMJv0OCRjCK29ujBm7vDkainKYzc270MoFVwCTZszIHwDAEIzIQmDRAxoAAIzK6306e6Uk6cI6PEUikVA0GpUkRaNRJRKJOjwLMHFlR+Y0eU/tsCDBAQBAeFTqgELHFCAYSGQhsEp7QHt/d3d3+xwVAABoJZFIRKlUquwcWcydhWYSc2Ja6SaFYw4ju0Kp2pKSDegMAABj4XhKEh0fAqFSBxS/Oqbw3QCGIpGFwKIHNAAAEzfZCZJrclG7XO/FWp4IuqNLejf1SpJWzl5Zl9ElkUhkRGcaRo4jELxEhDsSazKf/4H0QN0mVgdayfSZ07Vj2w5JhfZzID3gc0RAcHE81Th0WAkXvhvASMyRVS3q1jaM1wN69erV7LABAKiCtXbSF6MH0gPFx+Ai3EjMnQUgcNz5BzPWKuMul67fPrhB2wc3jFh/zaZeXbOpN9DzFYbJjm071LupV72bepXNZP0OBwg0jqcaxzuet9ZybB8CfDeAkRiRhUAr1wMaAACERK1GdlQqi+UjRo4jENxRiaVzZAXh+4E6q+FIPADwE8dTQHl8N4CRSGRVi1IbAAAALW+0ubMAAEBBM5YsNd48dE32f/mB4ymgPL4bwEgksmqFXnEAAAD14Y46GRzcIElqa+sKxLEWI8cB+KJFR+KZkrL+JBDCoVnfJ+t+B1EbHE8B5YX9u9Gs7Xaz/l9hwBxZAAAAAFAnc+JzJBVOer3lqjFPL1C8WMRFo+ZQKRFEgqh28vm8+vr6lM/n/Q4FQBMzxhR/SlVqtyttHxYcj/iHEVm10qK94gAAAGrGG+HulezxNRigNrKZrHo39UqSVs5e6WssABAElS7+cVGwdvL5vDo7O5XL5RSNRpVKpShNBrSofD5f1xKF3ijV8e7Dq90e8JDIAoAW1eE4irsXizscp7jecTrU1tZVXPbEnFjxAlzMiTUuUAAAWh0n+gCAKiSTSeVyueJorGQyGeoSZQAmhqQ2mgmJLABoUZl0WlJhWLe3LEnpdKa43luWpIH0QHG9twwANeX2zku7F+3j3ggtAFWrtsMKAqhcyR2SmgDGIZFIKBqNSpKi0agSiYTPEQHwA0ltNJMxE1nGmO9KOlHSH62189x1syXdISkuKS3pY9banHvblyR9WtJOSZ+31v5XXSIHAAAAAJSVSafLlm1JpzOUcwGAJheJRJRKpepaTgxA8JHURjOZMo5tbpF0/LB1l0p6wFp7gKQH3L9ljOmUdKakg937/KsxZmrNogUANLVaTPg5Jz6n+DjTZ06vUWSop3isUKrSGFNcBgCg5Vk78gcAxikSiai7u5skVsg57e2a1dOjWT09ctrbx97eHXnd1tbFyGsUk9qrV6+eeFlBY0b+AD4Yc0SWtfYhY0x82OqTJS13l78naY2kS9z1P7DWbpP0kjHmvyUtltRXo3gBAE3Mm/RzMrKZrHo39UpScU4vBFtm40Zt7umRJM1yfwMAAABAq0tns1WNpGbkNYbzktpA2I1nRFY5f2GtfUWS3N/vcde3SyqdOCXrrhvBGHOeMWatMWbta6+9NsEwwq1SL4mYE9PK2Su1cvZKxZzg9kz3Rj14ywgv730cnkCotB4IgnjcKX4243FnjK0xGfl8Xn19fcW62kAtVNu7tBl4o0Xr0a7GY7F39omMbEST49gUANDqvLkw48YMmQsTqDlGiCMgxhyRVaVyZxRlP93W2hsl3ShJixYtaupvQKWJltPpjKTCiZi3LEkD6QH5JZ/Pj7uGMqMemkelnjr04EGQZTL9GhzcIEnFSetRe/l8Xp2dncrlcopGoxMvRwAMk85mJbnHQe5ys/NGndajfWVkY+vyksLecivgGBUA0OoqzYUJNFI8FlNm48bisnde58Tj6s9kisuZdNqvENFEJjoi61VjzL6S5P7+o7s+K6l0aE5M0ssTD685ZNLpYsMS5C+ud7FyxYoV6uzspOc90EQq9Vyudj1aTzKZVC6XUz6fVy6XUzKZ9DskAHXEiPvw8S4YWGtbJikMAAAA/3md6Tb39BQTWpLUn8koba3S1hYTWmFDZZrgmWgi615J57jL50j6Scn6M40xM4wx+0s6QNLjkwsRjcLFSqB5WWvL9tSqdn09URYrmBKJhKLRqCKRiKLRqBKJhN8hAagjb8R976ZeZTMkRQAAAADUXz3LsFeLwR7BNGZpQWPM7ZKWS9rbGJOVdIWkqyXdaYz5tKR+SWdIkrX2WWPMnZJSknZI+htr7c46xY4a8y5WSuJiJYCGoyxWMEUiEaVSqXGXnQUazZtb1FtGeDnxuKTCSWyH4wS6kgEAAEAYUY4QQVXPMuzVKh3s4f3d3d3tc1QYM5FlrT2rwk3HVtj+KklXTSaosAp7fXouVgIAyolEIoE6aJs5c4a2bRuUJDlOx5B5JtF6/JxbNMzicUeZTL8kacaMNm3dus3niN4pQSKpOL8sAPhtxsyZGtxW2EeWJtnj8cL818YYjkeAFuaNHgnKBfjRBD0+NL/Sc5B43Als28lgj2AaM5GF8WuGScuDdrESAIDhtm0b1ODgBklSW1tXcb03n48xRjEnRoIDGEUm01/2exREXCwG4KfBbdvKJtnDtB8FUD/1Tg6FKVEGjCUsbSeDPYJponNkAQDQEE48XqyT7JWdAsoJy9w+pQk3bxljc5wOtbV1qa2tS47T4Xc4aCDvhHdwcEOxBycAAEAr8OavJomFseTzefX19TGfU414gz1IYgUHI7IAAIFWVakpY2QlyZ0v58K6RgZMjJdwk1Sc2wnv6HCc4ne9w3GK671ROMaY1h2RU24fOMZFDSceV3+m8Hq1zZihbVu31iMyAA1Wqax9pX2o1xnAW25Zo+xHZ06bpm07C1N8O+3toa2yAgBoPfl8Xp2dncrlcopGo0qlUiRg0HRIZAEAACAwvLlHjDHFZUwc804BzalSWftK+9BKnQFiTqzYqSLmxOobdMBt27lTm93koJckRGvwSreVjngp7QhSOjcaAARRMplULpcrjsZKJpNMHYOmQyKrQUyFCweV1gMAJsBaGWOGjHahAAOAplFp9JU3GtW98Mp+D5PBHBytxZtP0hjTGnNL1vuzTXWAULLuOUQpOoIAzSmfzzflvEeJRELRaFSSFI1GlUgkfI4IqD0SWQ1S6WSQk0QAUPUXYb3t3RI57EkBoAxvX+n1NB++nn1oU6lFAopzE7SsSsei7EcBBJSXfB3e/ldaj+YuvxeJRJRKpZoySQd4pvgdAAAAAIBJsFZG0paeHm3p6VGr9BufE58jqXChxltuVUwCDwSEuz++ZlOvrtnU2zL741YSjzvFREE87oyxNVA/Xts/vP2vtB5Dy+/lcjklk0m/Q6qpSCSi7u5uklhoWozIAgD4zy3nUTovwaiH3e72g4MbJEltbV30hG02lXpAAxg/d19ZWhrJlqwP+z40m8kOKSWL8ir1yKanNvxWWsrN989ipWPRJt+PhkWQpmTIZPqHvO8AwoPye0C4kcgCAAQXyQwAACaM8uYIMm9eIj6PGAufEQC1QPk9INxIZGFcmnUyRABAQFXqAQ0AAAAgsAI12hIYxiu/hxpgfkk0GHNkYUzeZIgrVqxQZ2en8vm83yEBaBXuPAMZa5VxlwE0j0qlgqpdDwAA4Kc58TkyxjBvo95JXpHEAjBe3j7UW8b45fN59fX1tcT1ekZkYUylkyF6f9N7AQAATFa1Zc+4IFKZ096uWW5vyBlTp/obzBjK9tSmlCxQNe+7NLw8X7XrAUwe8zYCaDk1nF+SfejEeINPcrmcotGoUqlUU1dSI5GFMTEZIoCaKTeaggspADBp6WzW7xDGrap5cShBAlREZwAAAIDW1WqDT0hkYUxMhggAAIC6Yl48AAAAABi3Vht8QiIL48JkiABqgp7AGK7SBLFjbc/oDKA1jFKCxC/5fH78Hby8fZZbIuXCegcHTAAlBwEAAMKn1QafkMgCAAAAQNJlHFqtDj1aA8krAACAYKiq05xaa/AJiSwAAOCfShPEjrF9kEZnAGgdVdehd/dZpZNXs88CmlvMiRUnqo85MX+DAQAAoUGnudGRyAIAAOHHSBJg8hqUdInHChd2jTFy2tuVzmbr8Cz10Wp16AFUbyA9QJlGAABQtao7zbUYElkAAEBS9UPYAWAiMhs3DhmFGSatVoceAAAAQGO0XKe5Mh2SzSibk8iqMW+iXAAAwiT0Q9h9Lt/ltf/De19XWg8gvFqpDj0ANLt4LKbMxo3F5XQ2+86FNe84zr/wAAAthE5zoyORVWNcqAIAhBFD2Cev0jEAxwYAAADBVNUoYS/B1dYliQQXAKD2WqrTXJkOyaMhkQUAAFpvCDvQ4hynQ23uhTjH6fA5GgAAAsS9sJZ2OyPFvQQWAADwDYksAADAEHagxaTTGUmF8pfeck2VK7fN6EQAAea0txdH5Djt7f4Gg2ByE1yDgxskSW1tXSS4AABoEBJZAIBA4OKB/1pqCDsAf3i92t39PRcAAQRFOpuVMWZESeAOx1HcTc53OE5xPSNbm0Ct2qQyk9UDAIDaIpEFAAiEdDYryR0d4C5LXDwAgMmotA+tuwmMvvItVgCBYkpGdAZhnslMOl02wZVOZ8quB+oln89TPQEA0LJIZAEAAi2TTksqXNTwlqUGlMWqsznxOcpmCgm7aTOmafvW7T5HBKAZVdqH+sYty7TZ7f0+q6en2AO+0sViAK3FuvuJ4fuCOfE5kgr7s5gT00B6wI/w0ExGaZMm8jilk9XXuiXL5/Pq7OxULpdTNBpVKpUimQUAaCkksgAA8EE2kx1ysgsAKI8RuAAkjp3Q2pLJpHK5nPL5fPFvSoIDAFoJiSy0hKCVpwDCqvS7FFQxJ1a8uBFzYv4GAwCYNMp3AeHGuRh8V+4cJmSfxUQioWg0KkmKRqNKJBI+RwQAQGORyGpR3slEq5xIVCpPAaA6YfgOeWVmjDGUnAEAAPAZ52LA5EUiEaVSKebIAgC0LBJZLco7mQAAAAAAAGhaTZJEjUQilBMEALQsElkIJcpTAACAMJkTn6NsJltcDuqI0dLyrNNm1OdUYcbUqZrV0yNJctrb6/IcAACMh9PeXrZN6nAcxd3rDh2O8872zNsIAIAvSGQhlCqVpyDBBQAAgiibyap3U68kFRNFQdSIBNvWHTvq/hwAUC3vXJIyiK0lnS10MjHGFJclKZNOF9d7y1Jh3sbi9u6y5O88vfl8npKDAICmRyILTYX66wAAAC3AGFlJci8aXuhnLACaAueQmAy/Rlrn83l1dnYql8spGo0qlUqRzAIANKUpfgcAAECzy+fz6uvrUz6f9zsUAAis0tEQ41kPAECrSyaTyuVyyufzyuVySiaTfocEAKFijCn+NJNmvA7FiCwAqAOvAaRnZ21UOqAIQwkYekkCwPhU2o+XXe+Owi8t1xjMVgAAgPpJJBKKRqOSpGg0qkQi4XNEAFpJpXkGw6QZq3s163UoRmRhYtxyLhfOXqkLuXAAlNVMjaDfrLVlX09vfVBe63I9Xugl2fyceFxSIaHqLUtSPO4U13vLAAAAQK1EIhGlUimtXr26aS5UAgiPdDZbvB5TOs8g/NWs16FIZKHIiceLQymHX4jz1nMhDgDK83q8rFixQp2dncVkltdLMhKJ0EuySfVnMkpbq7S16s+8M+l3JtOvwcENGhzcoEym38cIAQAIFu/cU6IjCIJrrKoQQRGJRNTd3U0SCwAgqXmvQ1FaEEXehThJipccmHkX4iSpra2rsJJyLgAwRGmPF+9v74QylUopmUwqkUhwglkDjtNRbI8cp6Ohz03ZUARZPp9nXwMgFErPPaVxnH+6FUE0e6Uk6cIGxYnWVlXJWwAAAqJZr0ORyAIQOFyIQxiNVp/e6yWJ6nQ4TvHCVofzTo/sdDrjaw1rLl4giJq1DjoAAPUWtBFWAABMVjNehyKRBSBQuBCHsGrWHi9+yqTTTTfpKlAvlUaFwn8xJ6aV7iiSmBPzNxggrHysCFJaArH0mKTSeoQP7x8AAMFHIgtAoHAhDmHWjD1eAITDaKNC4a+B9AAXuoEQq7a8HAkuBF3pCDQ+o0D4UO5+Ytj3hR+JLBR4Nce9neHw9W5tcr7mqDcuxAEAmk4D5nZhVCgABAMXxxB01h3hyGcVCCfvOxxklaYJ8HO+a/Z94UciC0CgcCGutQX9YAwAgoxRoQAAIKgYDQG0jkw6LanwvfeWpcJ81956bxkYLxJZLSgeiymzcWNxOZ3NFmuOp92DibjXc9hdPzi4QZLU1tbVsFFZpXHOmDpVW3fsaNAzw2+tdiFuTnyOspmspMLcGQPpAZ8j8g8nNI2Rz+dJFvulASNzEEA+zu2CxqLUCzBU2XNPAC2J0RAAyuIcOZSc9nbN6ukpLjcCiawWlNm4UZvdD5r3gQuisMQJTFY2kx1ycROop3w+r87OTuVyOUWjUaVSKZJZAFBDXKAD3sE5HQAAQPNJZ7MN75wwpWHPBABNJp/Pq6+vT/l83u9QgHFLJpPK5XLK5/PK5XJKJpN+h9RarJWRdM2mXl2zqVcU0wSCyxhT/AEAAADCZk58TvF4dk58jt/hlMc5MsaJEVkAMAETHdVCySH4LZFIKBqNSpKi0agSiYTPEYVHPBaTVPgeO+3tlEcCfBZzYsWRzDEnVvPHpwQSAAAAwowKQGgmjMgCgAmYzKgWLojBT5FIRKlUSqtXr6asYJW88kibe3qK830A8I83p6S1tqXnlwQAAEBzicdixZFUXofKZuF18KbqAarFiCwAmABGtQRb6YFRPRKH+XxeyWRSiUQilImgSCSi7u5uv8MAAAAAAADDNMMck5Wuy5S7RlPvSgtoDiSyAGACvFEtYU5mNLN6jnqbaFlJ1B8HvwAABIgxspLkXoCjJgEAAK2jmusyXnUFY0zgKy14c40ZYxRzYoGPt5mQyAKACWJUS2sqLSvp/c3nIBgG0gPMZwOEQNhHtQKYJC/BVVJSyA6/ra1r6HoAAIAAYN4x/5DIQlGH4yjunkx0OE5xveN0qM09kXCcDl9iA4CgoKwkgLCpVNaj3mVYy2mGUa0zZs7U4LZtkgrHzJl02t+AgKCyVsaYIaWRSEwBAABgIiaVyDLGfEHSZ1ToKJWU9FeSdpd0h6S4pLSkj1lrc5OKEg3hnYQbY4ackKfTmeJ6bxkAWhVlJWvPaW8v1v122tv9DaaSSuWRhvUqp0c5gqhSksqP0YuhH9VqjLaV/p1559g4HnfcTYwcp4PjZqASN8GVLtkHxb12071tcHCDJKmtrYs2FAAAIGD86BQ54USWMaZd0ucldVpr3zbG3CnpTEmdkh6w1l5tjLlU0qWSLqlJtJi8FqxTPic+R9lMtrhM7VIAk0VZydpKZ7MtVRKQubzQysI0qjUeK3w/jTFy2tuVzmYrb2yM0qV/Z/rrGRoAAAAA+MaP6zeTLS04TdJuxpjtKozEelnSlyQtd2//nqQ1IpHVlMJyIY7apc2PuTaA8kzp3BMhTBIFqRxaxfJIw3qVj6dHOXN5oZWFZlTr8MTUxo2F35W+8wAAAACAuplwIstau9EYs0pSv6S3Ja221q42xvyFtfYVd5tXjDHvKXd/Y8x5ks6TpI4O5l1qmBrWKfdGNhljGOWEhiiXsGqGuTaAerHuPj+sCZMglUMDUDtNOaqVcmgAAACohVGqaTnxuPrd0tZOPF6cGiYed5RxKwIUS1x7j+N26r+wAaED9TRlonc0xkQlnSxpf0n7SdrDGPOJ8d7fWnujtXaRtXbRPvvsM9EwmlY+n1dfX19x/oCqGTPyBwgxL2G1YsUKdXZ2Dplbw5trI5fLKZlM+hwpMA7uAeWFs1fqwtkrudgJAEFjrYykLT092tLTI46kAQAYWzwWK1ZP8Er0Aqid/kxGaWuVtraY0JKkTKZfg4MbNDi4oZjQAprNZEoLflDSS9ba1yTJGHOPpCMkvWqM2dcdjbWvpD/WIM6WwggTYKRKk8OHaa4NAAAAABMTltL2QCvLbNw4pAIQgAmoVTUt93FKp1uhEy3CbDKJrH5JhxtjdlehtOCxktZKelPSOZKudn//ZLJBtppKF+yrQtklNJlKCavQzLUBlOKAEgAAoCrMMQkAANC6JjNH1mPGmLskPSlph6SnJN0oKSLpTmPMp1VIdp1Ri0BbSb1HmDjt7cWeMU57+5DbTIUShJXWA40yWsKqKefaAACEVulxExdcAWCkDsdRvGRf2eE4xWXH6VBbW1dxGQAAjMKbC8ttOzn7QLOazIgsWWuvkHTFsNXbVBidhQmq9wiTdDYrqXCRxVv2VLrYEqSLMOOZ2DAedwoTG6KpkLACUHflOm4EqA1EOFh31GWQjp8AIEi8c7hy+8p0OsM+FAAAAENMKpGF+uGCfWXexIaShvTi8yY2lFTswQcAjVKaZG+bMUPbtm71OSL4jR7lAIBWV1oNZMbUqf4GA9RZPp+n5D2AxnM70ZVeE6UrCJoRiSwAACbLGA0ZA7ptW3GxdLTojBlt2rp1mxBgNez9TY9yoDmVlkSjHBowuuEVQIBmlc/n1dnZqVwup2g0qlQqRTILaHINT157JQTd41DOMtFqpvgdAAAAzcwbLTo4uEHbtg36HQ6AGnHicRljZIzRjJkz/Q4HDeSVRLPWFpclFctaW2spcQ0ALSaZTCqXyymfzyuXyymZTDbkeTkeAfzhJa9XrFihzs5O5fN5v0PCKOKxWHEe43gs5nM0mChGZAEAMFnuUP7SsqdeT6lKk67GnJhWzl5ZXAYQLpVKHQMAgNaTSCQUjUYlSdFoVIlEoiHPy/EI4I/S5LX3d92niKl03WEUXHcoyGzcqM1uqWOv5DHChxFZaG7uTv3C2St14eyVDLtFQzjxuKTC5NXeMjDcQHqgWHJuID3gczT+8npGGU6+EUBe7z1jjGZOG7sPWDzuvNPbL+6MsTUAAGgGkUhEqVRKq1evpqwg0AK85HUkEmlo8rpaXHdAM2FEFgDUGL3iUMSkq+PCHFIIsmp773nlRCUV50sCAADNLxKJ1H9ExjgxTy9QX17yuqFzZI2iGeZqLe3gyjUClEMiC83NvYjcu6lXkrSSUVkAAAAAUDvlOm6N4wJUpQtW1a4HMBIda4D6C1LyuhnmZ6VtH11pBZtWfa1IZAEAAIyD095eHJHjtLf7GwwAACFX6SJMtesBjN+c+BxlM9niMqXGACAcrDtYo5WPh0hkIZi8CQvdC4Z2+Ho3Cz1ivdvTqHW/0ggd77PrTr55oZ+xABhVOptt+QNHoOlMcCQJgBJ8Z4C6i8diymzcKKnQoSqdzU7ocbKZ7JCKNQCCqVInyg7HKU5h0eEwHy9aC4ksIEBiTqx4MBlzYv4GgzFVezIRjxcOMowxcpyOphj6DQAAAACor7Jzdlbq6Asg9LzrS8aYIdeaMul0cb237DdK/6JRSGQhmNzhkqUHarZkfdrdMca9Azd3fWkN6DDuOgfSA+z4Q6TsycRo25erU848bqFTmsCcMXWqtu7Y4XNElcVjhYS4MWZSPTfRuky50SrNiFE5rYv3GQAAAJgwrmGiUUhkAcBoKl3cpPxly6o2gemnWsU6feZ07dhWSNjFnBi19FsIJyVoZcyLBwAItEodfTn3BAA0IRJZAACMV6UEZpPbsW0HtfTR3EjYhVK9y5gwLx4AALXhxOPqz2SKy2OVRJsTn6NsplBNYtqMadq+dXu9QwQABByJLAAYTaWLVy1a/hLASEy46798Pq9kMqlEIqFIJOJ3OGgQvxJMYyXQql0PAEBNBfDcsz+TGXKOPJZsJktHOrS8linzXm+jdEiuNskOf5HIQmBRzgVA4FRKYKpyMsNxOopzos2Y0dbIaNEgmXSaC9Q+yufz6uzsVC6XUzQaVSqVIpmFuhrtu17pNvYPAIAxVVvWHkBT4/ix/qpNssNfU/wOAP4IQ1Y/nc0Wd9rpbNbnaABgdJl0urjPKu3Fk05nZK2VtVZbt27zKTqgeSWTSeVyOeXzeeVyOSWTSb9DAgAAaAivM13cmLKd6drauuQ4HT5GCAA+s1ZG0paeHm3p6VHwr4ijEkZktSiy+gAANAajteorkUgoGo1KkqLRqBKJhM8RAQAATMAoZe09w48rvQ50xpgRnem89d5ycWSXW6rvwhqFDQBAI5DIAgAAqBMSWPUXiUSUSqWYIwsAAAAAgBCJObHiXIgxJ6ZspnJVNhJZAAAACLVIJKLu7m6/wwAAAAgud77f3k29kqSVs1cy3xYAwFcD6YEho41Hmw6JRBYAAAAAAAAAAI1S7oI9FT2CLUQlWqfPnK4d23ZIKox0GkgP+BzR5JHIgr/YaSPEnPZ2zerpKS4DAAAAAIDxiccdZTL9kqQZM9q0des2nyMCgOawY9uOISNwmwGJLACYoHQ2O2KyXQAAAAAAMLZMpl+DgxskSW1tXT5HAzQY15LCpwElWmdOm6ZtO3dKKnSaT2crzxnVakhkwV/stAGETOlIvBlTp/obDEKNRDgAAADGa7R5Q5pKiEp3AWHQMvuOJrFt505tdq85edeeUEAiC6HT4TiKuzvhDscprnecjmIPHsfpKK6PObHiEMqYE2tcoPDdnPgcZTOFngvNUg8W/qM3DGqRgCKBBQAAgGpw/AhgIlpm3zHK9DVMDdIcpvgdAMLNj6x+Jp0u7oQz6XRxfTqdKa5PpzPF9QPpgeJ6EhmtJZvJqndTr3o39RYTWvVA7xaEzYyZM2WMkTFGTjzudzihYq1tnRMBAAAAoNGslZF0zaZeXbOpV5xtA5isdDb7zjVjOieHFiOyMClczEPDjNKzonSCWMfpKCQyG1SOgO8Awmhw2zalve/PWIlYSnsAI3nfC/f7Q0sAAABQAcdNABqhGa7PeftLd/RYE/xHNUUiC0DgxGMxZTZulDS+iQ2DNkEs5S8RCBwAAQAAAE3PqxAyvPx1pfV1DKS68w9ve/ccmfMVYHLy+bySyaQSiYQikYjf4YRaaYf5GTPatHXrNp8jUrGajjFGHY4zpEpZqyCRBSBwMhs3jpzY0FoZY4aMIhn1QNfdvndTryRp5eyVDTswzqTTZU8W0ulM2fUD6YHGnVwA1fLxuwT4rtIFmUptEhdkAABAg1U6jyy33pdOlNWeywOoWj6fV2dnp3K5nKLRqFKpFMmsSfCtw7y7vyy9JurtL/szmfFX1mlSJLKAAGl4jykANRWo7/AoB0Coj0C87wAAAEAF3rzhxpjazyFe7fmHu33pxWJve6qWAJWVm6c9mUwql8spn88X/+7u7m50aEBdkcgCAoQLoKIcAUKN73Dr4r1vUjW8IAMAAIDxqWvCDQi5cueeiURC0WhUkhSNRpVIJBodFnwyc+YMbds2KKkwjUk6nfE5ovohkYVAq7bWc6BGQwAAAAAAAABAHUUiEaVSKebIqkZJeXgpvB3jt20bHFkG0fvf3JGtF/oSWe2RyEKgVVPrebT1JLhChN7vCIJy9YZbYN/RSj15gEajRA4AAACAeolEIpQTRFMjkYWWQPIKAMZWticPgJqgRA4AAAAABITbMT7tXjOOe6OYgqja0WPu/9a7qVeStHL2yuD+b1UgkQWgadH7HRNG8hsAAAAARmrR6hUAAH+RyALQtPzu8V6plCUlLgEg/DocR3H3Qk6H4/gcDQAAwPj4MfVCpeMmx+koVoJwnI6GxAIAvqu2Q0Cl0WPeb3c/2uxXGklkAUAdVDuPGwAgmJz2ds1y52102tuL6zPptKTCRSBvGQAAIOgmfU46yv2rPW7y5uQ1xjA/LwCo8n4UJLIAAACAitLZrCT3Aou7PBp6FgMAgFZV7XETAIRNTaYxGaVDQDqbHf+IWXekVulc583cfX6K3wEAANDs8vm8+vr6lM/nh6wvLesBoDmk05niSQc9iwGg8nEQAABA2HjTmFhrfZ/SpNUwIgsAgCrl83klk0klEglFIpExt+3s7FQul1M0GlUqlSrex5dSkyW1lKWSGspNUFvZj3r/AACgstGOgwAAAAKnCa6NNCsSWQACh3qwCLJqL8gkk0nlcrliL+RkMqnu7u5GhdtSSF4h6Ei2hgvvFzB5HAcBAACgFkhkAQicSvVgOxxHcfeiUofjFNczHwkaqdoLMolEQtFoVJIUjUaVSCQaEmdFbg3ltPv9inu9jUaprVyTGtAASIaEDO8XMHmBOw4CAAAYTYvNOxUmJLIAhEYmnS6b4EqnM/SWRsNUe0EmEokolUqNuxRhEA2kB/iOAQCAqjXDcRAAAGhOlTrMN4Nm7JBMIgtA1aqZHwhoNhO5IBOJRCijAyA0aOcB1BLHQQAAIIgy6bSkQilxb7lZNGOHZBJZAKrChM0AF2QANC/aeQAAAACtzM8pTJint7IpfgcAIFxK5wfK5XJKJpN+hwQAAGqEdh4AAABAK0unM8UkUjqdaehzW2uLPxiKEVkAqsKEzUB4OO3tmtXTU1wGgLHQzgMAAAAAgoZEFoCq1GzCZneo7BD0NgBqKp3NMhwdQFVq1s4DAICWVKksVq3WAwCaz3j29SSyAFSN+YEAAGhetPMAAGCiKl2IrNV6AEBzGe/+nkQWAH9wUAoAAAAAAAAAo+pwHMXdkaodjlNc7zgdamvrKi43MxJZAAKr0rDSateHRdjjR3hUOgACAAAAAABAsGTS6bLXDdPpTMtcTySRBSCQWq3sQNjjR7hUOgACUB5zOgAAAAAA/MI5JoksAADgaqUh6UA1Wq1zBQAAAAAgODjHlKZM5s7GmFnGmLuMMc8bY54zxnQbY2YbY35pjHnB/R2tVbAAUI18Pq++vj7l83m/QwFCIZ3OSCocIHnLAAAAAAAAYVY6ognhNKlElqRrJP3CWnuQpPmSnpN0qaQHrLUHSHrA/RsAGiqfz6uzs1MrVqxQZ2cnySw0J2PK/wAAAAAAAEBSocOu94NwmnAiyxjzbknLJN0kSdbaQWvtZkknS/qeu9n3JJ0yuRABoHrJZFK5XE75fF65XE7JZNLvkAAAAAAAAAAAVZrMiKz3SXpN0s3GmKeMMd8xxuwh6S+sta9Ikvv7PeXubIw5zxiz1hiz9rXXXptEGAAwUiKRUDQaVSQSUTQaVSKR8DskoPasLf9TYwzBBwAAAAAAgF8mk8iaJmmhpOuttYdIelNVlBG01t5orV1krV20zz77TCIMABgpEokolUpp9erVSqVSikQifocENFylBFS16xmCDwAAAAAAAL9MJpGVlZS11j7m/n2XComtV40x+0qS+/uPkwsRACYmEomou7ubJBZaVqUEVLXrAQAAAAAAAL9MOJFlrf2DpAFjzPvdVcdKSkm6V9I57rpzJP1kUhECAAAAAAAAAACgJU2b5P3/TtKtxpg2Sf8j6a9USI7daYz5tKR+SWdM8jkAAAAAAAAAAADgKp0iorS6TqX1YTapRJa1dr2kRWVuOnYyjwsAAAAAAAAAAIDyKiWpmiV5VWoyc2QBAAAAAAAAAAAAdUMiCwAAAAAAAAAAtJTSEnyTWY/6m+wcWQAAAAAAAAAAAKFSbWm+ZizZFxaMyAIAAAAAAAAAAEAgkcgCAAAAAAAAAABAIJHIAgAAAAAAAAAAQCCRyAIAAAAAAAAAAEAgkcgCAAAAAAAAAABAIJHIAgAAAAAAAAAAQCCRyAIAAAAAAAAAAEAgkcgCAAAAAAAAAABAIJHIAgAAAAAAAAAAQCCRyAIAAAAAAAAAAEAgkcgCAAAAAAAAAABAIJHIAgAAAAAAAAAAQCCRyAIAAAAAAAAAAEAgGWut3zHIGPOapIz7596SXi+zWb3XV2u0xwlLrMQ5McQ5+vpqEefo6yciLLES5+jrq0Wco6+vVqvFOdH7VKPVXlPibEw8xNmY9RMRlliJc/T11SLO0ddXizjHd1s1eE1HX18t4hx9fbWIc/T11WrEORGvaWPWV4s4R19frUbG6Vhr9ykbhbU2UD+S1vqxvlZxhilW4iRO4my+OMMUK3ESJ3EGJ84wxUqcxEmcwY8zTLESJ3ESZ/DjDFOsxEmcxBneOMMUK3ESZyvGSWlBAAAAAAAAAAAABBKJLAAAAAAAAAAAAARSEBNZN/q0vlqjPU5YYiXOiSHO0ddXizhHXz8RYYmVOEdfXy3iHH19tVotzonepxqt9poSZ22flzhr+7wcj9T+eYmzts9LnLV93rDHOdZt1eA1HX19tYhz9PXVIs7R11erEedEvKaNWV8t4hx9fbUCEadx6xACAAAAAAAAAAAAgRLEEVkAAAAAAAAAAABAsBJZxphTjTHWGHNQybr3G2PWl/z8yRiz0scY/8IYc5sx5n+MMeuMMX3GmFPd275gjHnWGPOMMeZ2Y8zMgMZ5oRvjs36+lm4se5W8t38wxrxpjNlujHnbGNPmbjPbGPNLY8wL7u9oQOM8w31NdxljFjU6xpJYS9/71904MyW3/z9jzPPGmA3GmB8ZY2b5FOd7jTE/MMa8aIzJGWO2GWN+X3L7V90Y1xtjVhtj9vMjTjcWb990tzHmj8aYZ8psc5G7zd4+xTjW+95jjNlY8jk+wac4S79Lbxljdrrfo/Ul36W/M8b8zv0+fcOnOIfvQ/9ojNlc+t4bY+4o+V/Sxpj1fsTqxlLxM2qMWWCMedSNc60xZnFA45zvtlVJY8xPjTHv9inG0n3T740xb7jLzxpjLnS38b1dGhZr2m2X8m5MXpxBaZe89325MeZBY8xzw17PoLRLY8UZiHZprPe9ZLugtEsZY8yf3X1+f8nr6Xu7ZEYe3/3BjXWrMSZV+pr63TaNc9/ke7tkhrafG4wxW4wxA8PiDES7NI59aNDapf8xhWOmP7lxfsW9PRBtkhuLtx/dYIx52n3fvTiD0iaN9Xr63iaV2TdtdD+jb7v7Ji9W39ulYd/5J9196Eul733Jtn63S2O99763S24c3veoyxjz+PDvkrtNEM6Xxno9g9AmDf8uDbqxvm2M+aq7TdDapBdN4Rh0s3nnWNR7TX1vl4bFmTLG/Nz9fZ97exDbpIPcv6caY54qidX3dsmUv3Z7+rA4g9ouedd0fuZu43ub5MYx6me0ZDvf2qRxvp5BaZPKfUb/p/T1bGibZK0NzI+kOyU9LKmnwu1TJf1BkuNTfEZSn6TzS9Y5kv5OUruklyTtVvK/nBvAOOdJekbS7pKmSbpf0gF+v/dujD2SviVpoaRnStZ/Q9Kl7vKlkv4xoHHOlfR+SWskLQrCey9pmaQTJL1css0KSdPc5X/04/WsEOeZkv6nZJt3lyx/XtINPr7n3r7p5uHvu3v7HEn/JSkjae+AvJ7D3/ceSRf59RpWiPtmSf887Ht0tLtfmuH+/R6/X0933Rnu9+WZCvf5J0l/7+NrWfEzKmm1pA+7yydIWhPQOJ+QdJS7/ClJX/X7vZe0r7tvWirpXZJ+L6kzCO1SaaxunAslLXD38V6cvrdLw973VZIWuutKX0/f26Vxxul7uzSe993dLjDtUkmcjqSLSl7PHgWoXXLj+UqF997Xtmm8+6Zh92l4u1QhzhNUOAcpfT19b5fGuQ8NVLvkLkfcOJdLekzS4QpAm1QSr7cf/Zr79/SSOH1vk8b5egaiTSqJucfdd0bKvKa+tktlvvPGfZ//rjRO97YgtUuV3vseBaBdKvke9VR43wN1vlTp9Ry2va/nSm4MPZK+XOb1DFSbVPJ3twrtfGmsvrZLw+N0162S9EtJ97l/B7FN6nH//j+SbiuJ1dd2qcLr6Ui6Z1icQW2Xhr+egTpXKlk35DPqrvO1TRrn69kjn9ukCq/nVyWtLYmzoW1SYEZkGWMikj4g6dMqnJiVc6ykF621mQq319sxkgattTd4K6y1GWvtde6f0yTtZoyZpkKi6GUfYpRGj3OupEettW9Za3dI+rWkU32Ks5yXJG0atu5kSd9zl78n6ZRGBlTBiDittc9Za3/nUzyeIe+9tfYhSSmVxGqtXe2+95L0qKRYw6Ms7Oi2D4vzUUlveRtYa/9Usv0ekmxDI3QN2zd1a+TnUyokY74on2LUON73gMqo5D13XSDpamvtNkmy1v6x4VGV34f+UNL15TY2xhhJH5N0e2PCG/H8Y31GrSSvt96e8qltGkec75f0kLv8S0mnNy66ouH7plestT+w1j5srf2zpOdU6LgShHapGKsb55PW2vXW2tVenEFol4a97ydaa5+UpNLXMwjt0jjjDEK7NOb77m4XmHapJM6MtXbVsDiD5s/l3nv53zaNd98kydd2afjxyCvW2p9ba68bFmcQ2qXxfJcC1S7Zgry1dr2kx1W4uGkVjDZp+H70NHf1dPfHBqFN0jhezyC0SeVYa/PuYulr6ne7NPw7773P15XG6W7rd7s0nu+S74ZfFyv3vsv/Nkmq4vX0+1xpmEH3d+nrGag2SSp+l/qstQ8Pi9XvdmlInMaYmKRDJH29ZJsgtklnurF+RNJ3vG0C0C6NuO4gaacKn8PSOIPYLu2pka+n322SNL7PqOR/mzTciNczIIZ8Rt3X8wgVXjtPQ9ukwCSyVNi5/cJa+3tJm4wxC8tsc6b8bfwOlvRkuRustRtVyPL2S3pF0hb3RMgPFeNUYTTWMncY4+4q9DiZ07DIJuYvrLWvSIUTYknv8TmeIBvtvS/nU5L+s06xjGaepHVjbWSMucoYMyDpbEl/X/eoyjtFJfsmFV7jImPMSZI2Wmuf9iE2z3jf9791h3p/188h/mM4UNJSY8xjxphfG2MO8yGGar9HSyW9aq19oU7xjOUUjfIZlbRS0v9zv0urJH2podG94xSNHuczkk5yl8+QP21TxX2TMSauwkHwYwpGu1Q21mFxBsEpKnN8N0qcfrVLp2gccQagXRrzfQ9yu1TmfQ9suzQsVr/bpvHumzx+tUsV289hca6U/+3SePahgWuX3LJI6yX9UdIvrbVBaZOkkfvR3w2LMwjG83qW8qtNGqFSrD63SyO+8+XiDEi7NN733u926RQN/R4tKhOn322SVN13ye9zpVKmTJwrFcA2qcJr6ne7NDzOXhUuaO8qWRfINknSLRoZq9/KHTf1avQ4g9IunawycQbwXKlXw+IMSJs0XNnXU/63ScM/o70aGWdD26QgJbLOkvQDd/kH7t9FpjB3ykmSftjguCoyxnzLFOoVP+F+oE6WtL+k/STtYYz5hL8RFpTGaa19ToWhqL+U9AtJT0vaMeoDILSMMd+S9HNJ7ytz22UqvPe3Njqu8bLWXmatnaNCjH/rUxjD903egaPcZPBl8i/JVlaF9/16Sf9LhZIPr6hQ3iGIpkmKqlA64WJJd7q9+Hzj7UMl/aTCJmfJ304WFT+jrgskfcH9Ln1B0k0NjK3UWHF+StLfGGPWqVCCalAB4fbou1vSymE9zQIloHGOOL6rFKfP7dK44gxIuzREaZwqvH6BbJeMMUlJz+qd1zOw7VKZ9z5wbZM06nfe73ZJ0pBzkHUaGmdQ2qUhyryegWuXrLU7rbULVOiNvdgYM8/nkEoN34/eq2DGWTTa6xm0c6VKsQapXXLPQZ6UtF3vxNmlALZLFV7PILRLw79HHy8TZ+DapDH2TYFok1y2TJyBbJMqvKaBaZeMMSdK+qO1dswOyj4p/S4lJe0V4FglSaYw59BySTdUuD0o7dKBkvLlXs+AtUkjPqMBvYZX6fUMQptU5L6e75f0XQ39jDa0TZpWrweuhjFmLxWGq80zxlgV5sKyxpgvWmu9YX4flvSktfZVv+JU4eS7OHTXWvs3pjAp3FpJH5T0krX2NUkyxtyjwnC7/whYnLLW3iS3cTbGfE1S1ocYq/GqMWZfa+0rxph9VeiRgvLKvfcjerwbY86RdKKkY0u+Y430rKSPVrH9bZJ+JumK+oRTXoV90xRJOXeT/6VC8vppdz8dk/SkMWaxtfYPDQx1zPe9dN9pjPm2pCETXQZIVtI97ufycWPMLkl7S3qtgTFU2oeul7S5dENTKCV7mqRDGxhf6fOP9RmVpHMkXegu/1A+DFcfT5zW2udVqP8tY8yBKgytb7QR+yZjzHQVLmzeaq29x10dhHZpSKwV4vRVpeM7SV0aFqef7VI1cZbwpV3SGO+7MSahALZLKiTZ/kuFEo33SMFtlyp8l/xum8a7b/K7XSrXfr5XhZLcl5XE6Xu7pHHsQ4PaLkmStXazMWaNpOMVgDZplP3oF1WYe+R4FUYS+G08r+czAThXqmh4rCU3+dEuVbzuUBKn19k3CO3SqO+9LZS/leRPuzTGdbHS993vNkka/3fJ13OlSobFGbg2qVSZz6if7VJpnB+QdJIx5gRJMyW92xjzHwpmmzRb0u7GmHRprNZavwcfDD9eTqowZ+chKiThinEGrF2aI6lzjNczCOdKIz6jkv5dwWiTSo35evp4rlT6Gf2ACgmrXSqU4O5wv/MNbZOCMiLro5K+b611rLVxN3v7kqQjS7YJQi+OX0maaYy5oGTd7u7vfkmHG2N2dzOPx6pQX90Po8UpY8x73N8dKhxU+P26juVeFQ4u5P6uNCoC5d/73Uo3MMYcL+kSSSdZa4fPT9Qov5I0wxjz2ZJ1XRr6OT2g5LaTJD3foNhKlds3DciN01qbtNa+x70trsIOfKEPDeB43vd9S/48VcG4mFDOj1U46PQOztskvd7gGEbdhw7zQUnPW2v96hAw6mfU9bKko9zlYyT5UdZjzDhL2qYpkv6vKvREq7Mh+ya3Pf+xpD9Za79Zsl0Q2qVirG6cN6lQNiNIPQ2HvO+SOlT4Tm8pfT0D0C6NN84gtEujvu9BbJdK4nxJUukIvKC2SzdJem7Yd/7H8rdtGu++SfK3XRrSfrpxfkuFuQpK4wxCuzTmPjRo7ZIxZh9jzCxjzGHGmA/Jfa8VjDapuB+VdJikhArf+WNK4gyCMV/PALRJ5exhjJklScaY3fROrH63S8O/8/tIeu+wOJ8KULs01nvvd7s0/HhkoQrXmY4sfd/lf5skjW/fJPl/rlRqdxUuEmvY6xmoNsmNbx9jzNHGmKOGfef9bpeKcVprv2StjalQ4vDrkn7lXngPVJvk7nveLek3kj6pwpQ1Xqx+G7IPtdZ+SYVRLVmVxBnAdukBSf/g7qdK4/S7TZLG/oyeHpA2qVSl19PvNkkq+YyWvJ5HqpCk8r5HP1Yj2yRrre8/cntpDVv3eUnXu8u7S3pD0p4BiHVfFTLjL6kwkeWDKgz3lqSvqPBFfUaFLO+MgMb5sKSUCmUFj/X7NS2JuUfSUyoMmdyuwg7l05L2UuGL/YL7e3ZA4zzVXd4m6VVJ/xWA9/4NN54dJXH+twoXkNe7Pzf4FOd+ku6U9KKkLZK2Dns973a/Sxsk/VSFXtyNjnHIvkmFpO8WFSbgzEr69LDt05L2Duj7/u8q9PDZoMLB5b5+xDks5qQKFzVL3/c2FUayPqNCaZJjAvB6Pu5+p3Olsbrb3SLpfB9fwzE/oyocaKxz9/mPSTo0oHFeKOn37s/VkoxPr2npvuklFXqUP1+yzzxBAWmXSmLd6Mb5JxXady9OX9ulMu/7kW6cbwx7PX1tl6qI0/d2aTzv+7Bt0/K/XXrZjTPvxuO9noFql1Q4vvsXN9YNw95739um8eyb3O1ukb/tUmn7mXLjzAx7PX1vl4a9ppX2oUFrlwYkve3G+XtJf+/e7nubVLofVaFz2lPu6/pGSZxBOVca6/UMxLlSSbw9KpQTesrdNz1TEqvv7dKw73xS0p/d73wxzmHbp+VfuzTWe+9ru6SRxyNd7nfmjWHvu+9t0nheT3ebW+RjmzQs3uvd/dLw71HQ2qQX3f3QFr1zfdGL1fd2aVicz6ow6uZsSfe5tweqTSpZ93n3M7C8JFbf2yVVuHY7LM4gtksXuculcfreJo3nMzps27R8apPG8XoG4lypwmf0KyVxNrRNMu6TAgAAAAAAAAAAAIESlNKCAAAAAAAAAAAAwBAksgAAAAAAAAAAABBIJLIAAAAAAAAAAAAQSCSyAAAAAAAAAAAAEEgksgAAAAAAAAAAABBIJLIAAAAAAAAAAAAQSCSyAAAAAAAAAAAAEEgksgAAAAAAAAAAABBI/x9zKsZq/WDK0AAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "