-
Notifications
You must be signed in to change notification settings - Fork 3
/
1st.py
94 lines (58 loc) · 2.58 KB
/
1st.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import numpy as np
import cv2
from matplotlib import pyplot as plt
import glob
allimg = glob.glob('data/test/new/*.jpg')
number_fo_images = len(allimg)
image_data = []
points_data = []
for im in allimg:
image_data.append(cv2.imread(im))
for x in range(0, number_fo_images):
for y in range(x+1,number_fo_images):
print ('a')
img1 = image_data[x]
img2 = image_data[y]
sift = cv2.xfeatures2d.SIFT_create()
kp1, des1 = sift.detectAndCompute(img1,None)
kp2, des2 = sift.detectAndCompute(img2,None)
bf = cv2.BFMatcher()
matches = bf.knnMatch(des1,des2, k =2)
good = []
for m,n in matches:
if m.distance < 0.5*n.distance:
good.append(m)
#img3 = cv2.drawMatchesKnn(img1,kp1,img2,kp2,good,None,flags=2)
#plt.imshow(img3),plt.show()
MIN_MATCH_COUNT = 10
if len(good)>MIN_MATCH_COUNT:
src_pts = np.float32([ kp1[m.queryIdx].pt for m in good ]).reshape(-1,1,2)
dst_pts = np.float32([ kp2[m.trainIdx].pt for m in good ]).reshape(-1,1,2)
M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC,5.0)
matchesMask = mask.ravel().tolist()
new_dict = {
"img1": allimg[x],
"img2": allimg[y],
"src_pts":src_pts,
"dst_pts":dst_pts,
"Homography_matrix":M,
"matchesMask":matchesMask
}
points_data.append(new_dict)
h,w,_ = img1.shape
pts = np.float32([ [0,0],[0,h-1],[w-1,h-1],[w-1,0] ]).reshape(-1,1,2)
dst = cv2.perspectiveTransform(pts,M)
img2 = cv2.polylines(img2,[np.int32(dst)],True,255,3, cv2.LINE_AA)
else:
print ("Not enough matches are found - %d/%d" % (len(good),MIN_MATCH_COUNT))
matchesMask = None
draw_params = dict(matchColor = (0,255,0), # draw matches in green color
singlePointColor = None,
matchesMask = matchesMask, # draw only inliers
flags = 2)
img3 = cv2.drawMatches(img1,kp1,img2,kp2,good,None,**draw_params)
plt.imshow(img3, 'gray'),plt.show()
cv2.waitKey(0)
#data = np.load('cameracalibmat_data/camera_mat_and_dist_coeff.npz')
#print (data['name1'])
#print (data['name2'])