-
Notifications
You must be signed in to change notification settings - Fork 3
/
backup.py
132 lines (110 loc) · 5.29 KB
/
backup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import numpy as np
import cv2
import glob
import argparse
class StereoCalibration(object):
def __init__(self, filepath):
# termination criteria
self.criteria = (cv2.TERM_CRITERIA_EPS +
cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
self.criteria_cal = (cv2.TERM_CRITERIA_EPS +
cv2.TERM_CRITERIA_MAX_ITER, 100, 1e-5)
# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
self.objp = np.zeros((9*6, 3), np.float32)
self.objp[:, :2] = np.mgrid[0:9, 0:6].T.reshape(-1, 2)
# Arrays to store object points and image points from all the images.
self.objpoints = [] # 3d point in real world space
self.imgpoints_l = [] # 2d points in image plane.
self.imgpoints_r = [] # 2d points in image plane.
self.cal_path = filepath
self.read_images(self.cal_path)
def read_images(self, cal_path):
images_right = glob.glob(cal_path + '/right/*.png')
images_left = glob.glob(cal_path + '/left/*.png')
images_left.sort()
images_right.sort()
for i, fname in enumerate(images_right):
img_l = cv2.imread(images_left[i])
img_r = cv2.imread(images_right[i])
gray_l = cv2.cvtColor(img_l, cv2.COLOR_BGR2GRAY)
gray_r = cv2.cvtColor(img_r, cv2.COLOR_BGR2GRAY)
# Find the chess board corners
ret_l, corners_l = cv2.findChessboardCorners(gray_l, (9, 6), None)
ret_r, corners_r = cv2.findChessboardCorners(gray_r, (9, 6), None)
# If found, add object points, image points (after refining them)
self.objpoints.append(self.objp)
if ret_l is True:
rt = cv2.cornerSubPix(gray_l, corners_l, (11, 11),
(-1, -1), self.criteria)
self.imgpoints_l.append(corners_l)
# Draw and display the corners
ret_l = cv2.drawChessboardCorners(img_l, (9, 6),
corners_l, ret_l)
cv2.imshow(images_left[i], img_l)
cv2.waitKey(500)
if ret_r is True:
rt = cv2.cornerSubPix(gray_r, corners_r, (11, 11),
(-1, -1), self.criteria)
self.imgpoints_r.append(corners_r)
# Draw and display the corners
ret_r = cv2.drawChessboardCorners(img_r, (9, 6),
corners_r, ret_r)
cv2.imshow(images_right[i], img_r)
cv2.waitKey(500)
img_shape = gray_l.shape[::-1]
rt, self.M1, self.d1, self.r1, self.t1 = cv2.calibrateCamera(
self.objpoints, self.imgpoints_l, img_shape, None, None)
print(np.asarray(self.objpoints).shape)
print(np.asarray(self.imgpoints_l).shape)
print(np.asarray(self.imgpoints_r).shape)
rt, self.M2, self.d2, self.r2, self.t2 = cv2.calibrateCamera(
self.objpoints, self.imgpoints_r, img_shape, None, None)
self.camera_model = self.stereo_calibrate(img_shape)
def stereo_calibrate(self, dims):
flags = 0
flags |= cv2.CALIB_FIX_INTRINSIC
# flags |= cv2.CALIB_FIX_PRINCIPAL_POINT
flags |= cv2.CALIB_USE_INTRINSIC_GUESS
flags |= cv2.CALIB_FIX_FOCAL_LENGTH
# flags |= cv2.CALIB_FIX_ASPECT_RATIO
flags |= cv2.CALIB_ZERO_TANGENT_DIST
# flags |= cv2.CALIB_RATIONAL_MODEL
# flags |= cv2.CALIB_SAME_FOCAL_LENGTH
# flags |= cv2.CALIB_FIX_K3
# flags |= cv2.CALIB_FIX_K4
# flags |= cv2.CALIB_FIX_K5
stereocalib_criteria = (cv2.TERM_CRITERIA_MAX_ITER +
cv2.TERM_CRITERIA_EPS, 100, 1e-5)
ret, M1, d1, M2, d2, R, T, E, F = cv2.stereoCalibrate(
self.objpoints, self.imgpoints_l,
self.imgpoints_r, self.M1, self.d1, self.M2,
self.d2, dims,
criteria=stereocalib_criteria, flags=flags)
print("dsds")
print('Intrinsic_mtx_1', M1)
print('dist_1', d1)
print('Intrinsic_mtx_2', M2)
print('dist_2', d2)
print('R', R)
print('T', T)
print('E', E)
print('F', F)
# for i in range(len(self.r1)):
# print("--- pose[", i+1, "] ---")
# self.ext1, _ = cv2.Rodrigues(self.r1[i])
# self.ext2, _ = cv2.Rodrigues(self.r2[i])
# print('Ext1', self.ext1)
# print('Ext2', self.ext2)
print('')
camera_model = dict([('M1', M1), ('M2', M2), ('dist1', d1),
('dist2', d2), ('rvecs1', self.r1),
('rvecs2', self.r2), ('R', R), ('T', T),
('E', E), ('F', F)])
np.savez('cameracalibmat_data/stereo_camera_mat_and_dist_coeff_diff_camera1.npz', cameraMatrix1 = M1, distCoeffs1 = d1,cameraMatrix2 = M2, distCoeffs2 = d2,rvecs1 = self.r1, rvecs2 = self.r2, R = R, T = T, E = E, F = F)
cv2.destroyAllWindows()
return camera_model
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('filepath', help='String Filepath')
args = parser.parse_args()
cal_data = StereoCalibration(args.filepath)