Skip to content

Latest commit

 

History

History
161 lines (130 loc) · 6.27 KB

README.md

File metadata and controls

161 lines (130 loc) · 6.27 KB

Language-Conditioned Robot Manipulation With Base Skill Priors Under Unstructured Data

License: MIT

architecture

Installation

To begin, clone this repository locally

git clone --recurse-submodules https://github.com/Hongkuan-Zhou/spil
export ROOT=$(pwd)/spil

Install requirements:

cd $ROOT
conda create -n spil_venv python=3.8  # or use virtualenv
conda activate spil_venv
sh install.sh

If you encounter problems installing pyhash, you might have to downgrade setuptools to a version below 58.

Download

CALVIN Dataset

If you want to train on the CALVIN dataset, choose a split with:

cd $ROOT/dataset
sh download_data.sh D | ABC | ABCD | debug

If you want to get started without downloading the whole dataset, use the argument debug to download a small debug dataset (1.3 GB).

Language Embeddings

We provide the precomputed embeddings of the different Language Models we evaluate in the paper. The script assumes the corresponding split has been already downloaded.

cd $ROOT/dataset
sh download_lang_embeddings.sh D | ABC | ABCD

Pre-trained Models

D -> D

  • Pre-trained SKILL Generator can be downloaded here (epoch-98)
  • Pre-trained Model can be downloaded here

ABC -> D

  • Pre-trained SKILL Generator can be downloaded here (epoch-86)
  • Pre-trained Model can be downloaded here

Hardware Requirements

Trained with:

  • GPU - 1x NVIDIA Tesla V100 16GB
  • RAM - 256GB
  • OS - Ubuntu 20.04

Training

Before you start your training, please remember to update the wandb account at

  • conf/logger/wandb.yaml
  • skill_generator/conf_sg/logger/wandb.yaml

To login your wandb account, first run:

wandb login --relogin

SPIL model

To train the spil model with the maximum amount of available GPUS, run:

python spil/training.py trainer.gpus=-1 datamodule.root_data_dir=path/to/dataset model.action_decoder.sg_chk_path=path/to/skill_generator datamodule/datasets=vision_lang loss=your_loss_setting

To accelerate training process, the dataset can be first loaded into shared memory. (Note this way requires more RAM, please make sure your server has enough RAM)

python spil/training.py trainer.gpus=-1 datamodule.root_data_dir=path/to/dataset model.action_decoder.sg_chk_path=path/to/skill_generator datamodule/datasets=vision_lang_shm loss=your_loss_setting
  • The vision_lang_shm option loads the CALVIN dataset into shared memory at the beginning of the training, speeding up the data loading during training. The preparation of the shared memory cache will take some time (approx. 20 min at our SLURM cluster).
  • You can either use the following command to train the skill-generator or use a pre-trained one.

Skill-Generator

To train the skill generator, run:

python skill_generator/skill_generator/training.py trainer.gpus=-1 datamodule.root_data_dir=path/to/dataset 

Note that you should first train the skill-generator if you did not download the pre-trained skill generator.

Ablations

Hierarchical Universal Language Conditioned Policies (HULC), (Oier et al. 2022)

python spil/training.py trainer.gpus=-1 datamodule.root_data_dir=path/to/dataset datamodule/datasets=vision_lang_shm model=mcil
datamodule=hulc loss=hulc

Multi-context imitation learning (MCIL), (Lynch et al., 2019):

python spil/training.py trainer.gpus=-1 datamodule.root_data_dir=path/to/dataset datamodule/datasets=vision_lang_shm model=mcil
datamodule=mcil

Goal-conditioned behavior cloning (GCBC), (Lynch et al., 2019):

python spil/training.py trainer.gpus=-1 datamodule.root_data_dir=path/to/dataset datamodule/datasets=vision_lang_shm model=gcbc

Evaluation

See detailed inference instructions on the CALVIN repo.

python spil/evaluation/evaluate_policy.py --dataset_path <PATH/TO/DATASET> --train_folder <PATH/TO/TRAINING/FOLDER>

Optional arguments:

  • --checkpoint <PATH/TO/CHECKPOINT>: by default, the evaluation loads the last checkpoint in the training log directory. You can instead specify the path to another checkpoint by adding this to the evaluation command.
  • --debug: print debug information and visualize environment.

Real-world Experiments

Single.Task.Completion.4.mp4

Acknowledgements

This work uses code from the following open-source projects and datasets:

HULC

Original: https://github.com/lukashermann/hulc License: MIT

CALVIN

Original: https://github.com/mees/calvin License: MIT

Sentence-Transformers

Original: https://github.com/UKPLab/sentence-transformers License: Apache 2.0

OpenAI CLIP

Original: https://github.com/openai/CLIP License: MIT

Citation

If you find this article intersting, please cite:

@ARTICLE{zhou2024languageconditioned,
  author={Zhou, Hongkuan and Bing, Zhenshan and Yao, Xiangtong and Su, Xiaojie and Yang, Chenguang and Huang, Kai and Knoll, Alois},
  journal={IEEE Robotics and Automation Letters}, 
  title={Language-Conditioned Imitation Learning with Base Skill Priors under Unstructured Data}, 
  year={2024},
  volume={},
  number={},
  pages={1-8},
  keywords={Imitation Learning;Robotic Manipulation},
  doi={10.1109/LRA.2024.3466076}
}

License

MIT License