-
Notifications
You must be signed in to change notification settings - Fork 70
/
eval_generic.py
154 lines (127 loc) · 5.25 KB
/
eval_generic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
"""
Generic evaluation script
The segmentation mask for each object when they first appear is required
(YouTubeVOS style, but dense)
Optimized for compatibility, not speed.
We will resize the input video to 480p -- check generic_test_dataset.py if you want to change this behavior
AMP default on.
Usage: python eval_generic.py --data_path <path to data_root> --output <some output path>
Data format:
data_root/
JPEGImages/
video1/
00000.jpg
00001.jpg
...
video2/
...
Annotations/
video1/
00000.png
video2/
00000.png
...
"""
import os
from os import path
from argparse import ArgumentParser
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
import numpy as np
from PIL import Image
from model.eval_network import STCN
from dataset.generic_test_dataset import GenericTestDataset
from util.tensor_util import unpad
from inference_core_yv import InferenceCore
from progressbar import progressbar
"""
Arguments loading
"""
parser = ArgumentParser()
parser.add_argument('--model', default='saves/stcn.pth')
parser.add_argument('--data_path')
parser.add_argument('--output')
parser.add_argument('--top', type=int, default=20)
parser.add_argument('--amp_off', action='store_true')
parser.add_argument('--mem_every', default=5, type=int)
parser.add_argument('--include_last', help='include last frame as temporary memory?', action='store_true')
args = parser.parse_args()
data_path = args.data_path
out_path = args.output
args.amp = not args.amp_off
# Simple setup
os.makedirs(out_path, exist_ok=True)
torch.autograd.set_grad_enabled(False)
# Setup Dataset
test_dataset = GenericTestDataset(data_root=data_path)
test_loader = DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=2)
# Load our checkpoint
top_k = args.top
prop_model = STCN().cuda().eval()
# Performs input mapping such that stage 0 model can be loaded
prop_saved = torch.load(args.model)
for k in list(prop_saved.keys()):
if k == 'value_encoder.conv1.weight':
if prop_saved[k].shape[1] == 4:
pads = torch.zeros((64,1,7,7), device=prop_saved[k].device)
prop_saved[k] = torch.cat([prop_saved[k], pads], 1)
prop_model.load_state_dict(prop_saved)
# Start eval
for data in progressbar(test_loader, max_value=len(test_loader), redirect_stdout=True):
with torch.cuda.amp.autocast(enabled=args.amp):
rgb = data['rgb']
msk = data['gt'][0]
info = data['info']
name = info['name'][0]
num_objects = len(info['labels'][0])
gt_obj = info['gt_obj']
size = info['size']
palette = data['palette'][0]
print('Processing', name, '...')
# Frames with labels, but they are not exhaustively labeled
frames_with_gt = sorted(list(gt_obj.keys()))
processor = InferenceCore(prop_model, rgb, num_objects=num_objects, top_k=top_k,
mem_every=args.mem_every, include_last=args.include_last)
# min_idx tells us the starting point of propagation
# Propagating before there are labels is not useful
min_idx = 99999
for i, frame_idx in enumerate(frames_with_gt):
min_idx = min(frame_idx, min_idx)
# Note that there might be more than one label per frame
obj_idx = gt_obj[frame_idx][0].tolist()
# Map the possibly non-continuous labels into a continuous scheme
obj_idx = [info['label_convert'][o].item() for o in obj_idx]
# Append the background label
with_bg_msk = torch.cat([
1 - torch.sum(msk[:,frame_idx], dim=0, keepdim=True),
msk[:,frame_idx],
], 0).cuda()
# We perform propagation from the current frame to the next frame with label
if i == len(frames_with_gt) - 1:
processor.interact(with_bg_msk, frame_idx, rgb.shape[1], obj_idx)
else:
processor.interact(with_bg_msk, frame_idx, frames_with_gt[i+1]+1, obj_idx)
# Do unpad -> upsample to original size (we made it 480p)
out_masks = torch.zeros((processor.t, 1, *size), dtype=torch.uint8, device='cuda')
for ti in range(processor.t):
prob = unpad(processor.prob[:,ti], processor.pad)
prob = F.interpolate(prob, size, mode='bilinear', align_corners=False)
out_masks[ti] = torch.argmax(prob, dim=0)
out_masks = (out_masks.detach().cpu().numpy()[:,0]).astype(np.uint8)
# Remap the indices to the original domain
idx_masks = np.zeros_like(out_masks)
for i in range(1, num_objects+1):
backward_idx = info['label_backward'][i].item()
idx_masks[out_masks==i] = backward_idx
# Save the results
this_out_path = path.join(out_path, name)
os.makedirs(this_out_path, exist_ok=True)
for f in range(idx_masks.shape[0]):
if f >= min_idx:
img_E = Image.fromarray(idx_masks[f])
img_E.putpalette(palette)
img_E.save(os.path.join(this_out_path, info['frames'][f][0].replace('.jpg','.png')))
del rgb
del msk
del processor