-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathModel.java
546 lines (500 loc) · 22 KB
/
Model.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
/**
* Model encapsulates the state of the POS model with
* the methods that the model can be utilised for.
* This class is serialisable.
*
* @author Huang Lie Jun (A0123994W)
* @version 1.0
* @since 2017-10-08
*/
import java.io.*;
import java.util.*;
/**
* Enumerated types for labelling smoothing techniques
*/
enum Technique {LAPLACE, WITTENBELL, KNESERNEY}
enum Type {WORD, TAG, BOTH}
public class Model implements Serializable {
private Technique smoothingMode = Technique.LAPLACE;
private HashMap<String, Integer> wordFreq, tagFreq, wordTagFreq, prevCurrTagFreq;
private HashMap<String, Float> transitionProbMatrix, emissionProbMatrix;
private List<String> uniqueWords, uniqueTags;
private List<List<String>> results;
private String startTag, separator;
public Model() {
super();
initConstants();
}
/**
* This method constructs the model frequency tables
* from the training corpus and calculates the
* transition and emission probabilities of seen words
* and tags.
*
* @param trainingCorpus
*/
public void train(List<String[]> trainingCorpus) {
indexCorpus(trainingCorpus);
buildTransitionMatrix();
buildEmissionMatrix();
}
/**
* This method applies the Viterbi algorithm on a
* test corpus, and applies the smoothing scheme
* on unknown words. If the test corpus is tagged,
* it will assess the accuracy of tagging and return
* the accuracy. Otherwise, it will return 0.
*
* @param testCorpus
* @param smoothingScheme
* @param isTagged
*
* @return float
*/
public float test(List<String[]> testCorpus, Technique smoothingScheme, boolean isTagged) {
Set<String> testWords, seenWords, unseenWords;
HashMap<String, Integer> testWordsFreq;
int correct = 0, total = 0;
SmoothScheme smoother = null;
List<String[]> untaggedTestCorpus = isTagged ? getStrippedCorpus(testCorpus) : testCorpus;
switch (smoothingScheme) {
case LAPLACE:
smoother = new Laplace(wordFreq, tagFreq, wordTagFreq, prevCurrTagFreq, 1);
break;
case WITTENBELL:
testWordsFreq = new HashMap<String, Integer>();
for (String[] sentence : untaggedTestCorpus) {
for (String word : sentence) {
incrementFreqTable(testWordsFreq, word);
}
}
seenWords = wordFreq.keySet();
unseenWords = new HashSet<String>(testWordsFreq.keySet());
unseenWords.removeAll(seenWords);
smoother = new WittenBell(wordFreq, tagFreq, wordTagFreq, prevCurrTagFreq, seenWords.size(), unseenWords.size());
break;
default:
smoother = new Laplace(wordFreq, tagFreq, wordTagFreq, prevCurrTagFreq, 1);
break;
}
results = new ArrayList<List<String>>();
for (int sentenceIndex = 0; sentenceIndex < untaggedTestCorpus.size(); sentenceIndex++) {
String[] sentence = untaggedTestCorpus.get(sentenceIndex);
String[] taggedSentence = testCorpus.get(sentenceIndex);
double[][] pathProbMatrix = new double[uniqueTags.size() + 1][sentence.length];
int[][] backpointerMatrix = new int[uniqueTags.size() + 1][sentence.length];
double maxPathValue = -1;
int bestPrevTagIndex = -1;
for (int wordIndex = 0; wordIndex < sentence.length; wordIndex++) {
String currentWord = sentence[wordIndex];
for (int tagIndex = 0; tagIndex < uniqueTags.size(); tagIndex++) {
Float alpha, beta;
String currentTag = uniqueTags.get(tagIndex);
if (currentTag == startTag) {
continue;
} else if (wordIndex == 0) {
alpha = transitionProbMatrix.get(startTag + separator + currentTag);
alpha = (alpha != null) ? alpha : 0.0f;
beta = emissionProbMatrix.get(currentWord + separator + currentTag);
beta = (beta != null) ? beta : (countWord(currentWord) == 0)
? smoother.getBigramEmission(currentWord, currentTag)
: 0.0f;
pathProbMatrix[tagIndex][wordIndex] = alpha * beta;
backpointerMatrix[tagIndex][wordIndex] = -1;
} else {
bestPrevTagIndex = 0;
maxPathValue = 0.0f;
for (int prevTagIndex = 0; prevTagIndex < uniqueTags.size(); prevTagIndex++) {
String prevTag = uniqueTags.get(prevTagIndex);
alpha = transitionProbMatrix.get(prevTag + separator + currentTag);
alpha = (alpha != null) ? alpha : 0.0f;
double value = pathProbMatrix[prevTagIndex][wordIndex - 1] * alpha;
if (value >= maxPathValue) {
maxPathValue = value;
bestPrevTagIndex = prevTagIndex;
}
}
beta = emissionProbMatrix.get(currentWord + separator + currentTag);
beta = (beta != null) ? beta : (countWord(currentWord) == 0)
? smoother.getBigramEmission(currentWord, currentTag)
: 0.0f;
pathProbMatrix[tagIndex][wordIndex] = maxPathValue * beta;
backpointerMatrix[tagIndex][wordIndex] = bestPrevTagIndex;
}
}
}
int bestEndIndex = 0;
maxPathValue = 0.0f;
for (int tagIndex = 0; tagIndex < uniqueTags.size(); tagIndex++) {
String tag = uniqueTags.get(tagIndex);
if (tag == startTag) {
continue;
}
double pathValue = pathProbMatrix[tagIndex][sentence.length - 1];
if (pathValue >= maxPathValue) {
maxPathValue = pathValue;
bestEndIndex = tagIndex;
}
}
pathProbMatrix[uniqueTags.size()][sentence.length - 1] = maxPathValue;
backpointerMatrix[uniqueTags.size()][sentence.length - 1] = bestEndIndex;
int prevStateIndex = bestEndIndex;
int prevSequenceIndex = sentence.length - 1;
List<String> prediction = new ArrayList<String>();
while (prevStateIndex != -1 && prevSequenceIndex >= 0) {
String tag = uniqueTags.get(prevStateIndex);
String word = sentence[prevSequenceIndex];
prediction.add(0, word + separator + tag);
prevStateIndex = backpointerMatrix[prevStateIndex][prevSequenceIndex];
prevSequenceIndex -= 1;
}
if (isTagged) {
for (int predictionIndex = 0; predictionIndex < prediction.size(); predictionIndex++) {
if (prediction.get(predictionIndex).equals(taggedSentence[predictionIndex])) {
correct += 1;
}
total += 1;
}
}
results.add(prediction);
}
return isTagged ? ((float)correct / total) : 0.0f;
}
/**
* This method will run tests on the test corpus
* with different smoothing techniques and select
* the optimal technique for actual tagging.
*
* @param testCorpus
*/
public void tune(List<String[]> testCorpus) {
Technique[] techniques = new Technique[]{Technique.LAPLACE, Technique.WITTENBELL};
float currentAccuracy = 0, bestAccuracy = 0;
for (Technique technique : techniques) {
currentAccuracy = this.test(testCorpus, technique, true);
if (currentAccuracy >= bestAccuracy) {
bestAccuracy = currentAccuracy;
this.smoothingMode = technique;
}
}
}
/**
* This method will perform n-fold cross-validation
* on the corpus provided. n segments will be partitioned
* and prior to validating every segment, training will
* be conducted on the remaining sentences in the corpus.
* The accuracies obtained will be averaged and returned.
*
* @param corpus
* @param n
*
* @return float
*/
public float crossValidate(List<String[]> corpus, int n) {
float averageAccuracy = 0;
if (n <= 0) {
System.err.println("Cross validation fold must be positive.");
return 0;
} else {
List<String[]> validationCorpus, trainingCorpus, remCorpus;
int intervalSize = (int)Math.ceil((float)corpus.size() / n);
Model cvModel = new Model();
for (int start = 0; start < corpus.size(); start += intervalSize) {
int end = start + intervalSize;
end = (end <= corpus.size()) ? end : corpus.size();
validationCorpus = new ArrayList<String[]>(corpus.subList(start, end));
trainingCorpus = (start == 0)
? new ArrayList<String[]>(corpus.subList(end, corpus.size()))
: new ArrayList<String[]>(corpus.subList(0, start));
if (end < corpus.size()) {
remCorpus = new ArrayList<String[]>(corpus.subList(end, corpus.size()));
trainingCorpus.addAll(remCorpus);
}
cvModel.train(trainingCorpus);
float accuracy = cvModel.test(validationCorpus, this.getBestTechnique(), true);
averageAccuracy += accuracy;
}
return averageAccuracy / n;
}
}
/**
* This method applies actual tagging on the given untagged
* corpus, using the trained and tuned paramters of the model.
* The tagged result will be returned.
*
* @param corpus
*
* @return List
*/
public List<List<String>> tag(List<String[]> corpus) {
test(corpus, smoothingMode, false);
return results;
}
/*** Accessors ***/
public Technique getBestTechnique() {
return this.smoothingMode;
}
public HashMap<String, Float> getTransitionProbMatrix() {
return this.transitionProbMatrix;
}
public HashMap<String, Float> getEmissionProbMatrix() {
return this.emissionProbMatrix;
}
public HashMap<String, Integer> getWordFreq() {
return this.wordFreq;
}
public HashMap<String, Integer> getTagFreq() {
return this.tagFreq;
}
public HashMap<String, Integer> getWordTagFreq() {
return this.wordTagFreq;
}
public HashMap<String, Integer> getPrevCurrTagFreq() {
return this.prevCurrTagFreq;
}
/**
* This interface specifies the required common
* methods across all smoothing techniques.
*/
private interface Smoothing {
public float getBigramTransition(String prevTag, String currTag);
public float getBigramEmission(String word, String tag);
}
/**
* This abstract class is the parent class of all
* smoothing techniques. It constructs each smoothing
* scheme with the required frequency tables provided
* by the model.
*/
private abstract class SmoothScheme implements Smoothing {
private HashMap<String, Integer> wordFreq, tagFreq, wordTagFreq, prevCurrTagFreq;
public SmoothScheme(HashMap<String, Integer> wordFreq, HashMap<String, Integer> tagFreq, HashMap<String, Integer> wordTagFreq, HashMap<String, Integer> prevCurrTagFreq) {
super();
this.wordFreq = wordFreq;
this.tagFreq = tagFreq;
this.wordTagFreq = wordTagFreq;
this.prevCurrTagFreq = prevCurrTagFreq;
}
}
/**
* The Laplace class implements the smoothing methods
* with the Laplace smoothing technique, given the Laplace factor.
*/
private class Laplace extends SmoothScheme {
int laplaceFactor;
public Laplace(HashMap<String, Integer> wordFreq, HashMap<String, Integer> tagFreq, HashMap<String, Integer> wordTagFreq, HashMap<String, Integer> prevCurrTagFreq) {
super(wordFreq, tagFreq, wordTagFreq, prevCurrTagFreq);
this.laplaceFactor = 1;
}
public Laplace(HashMap<String, Integer> wordFreq, HashMap<String, Integer> tagFreq, HashMap<String, Integer> wordTagFreq, HashMap<String, Integer> prevCurrTagFreq, int laplaceFactor) {
super(wordFreq, tagFreq, wordTagFreq, prevCurrTagFreq);
this.laplaceFactor = laplaceFactor;
}
public float getBigramTransition(String prevTag, String currTag) {
return ((float)countPrevCurrTag(prevTag, currTag) + 1) / ((float)countTag(prevTag) + ((float)laplaceFactor * tagFreq.size()));
}
public float getBigramEmission(String word, String tag) {
return ((float)countWordTag(word, tag) + 1) / ((float)countTag(tag) + ((float)laplaceFactor * tagFreq.size()));
}
}
/**
* The WittenBell class implements the smoothing methods
* with the Witten Bell smoothing technique, given seen and unseen
* word count.
*/
private class WittenBell extends SmoothScheme {
int seen, unseen;
public WittenBell(HashMap<String, Integer> wordFreq, HashMap<String, Integer> tagFreq, HashMap<String, Integer> wordTagFreq, HashMap<String, Integer> prevCurrTagFreq, int seen, int unseen) {
super(wordFreq, tagFreq, wordTagFreq, prevCurrTagFreq);
this.seen = seen;
this.unseen = unseen;
}
public float getBigramTransition(String prevTag, String currTag) {
return (float)seen / ((float)unseen * ((float)countTag(prevTag) + (float)seen));
}
public float getBigramEmission(String word, String tag) {
return (float)seen / ((float)unseen * ((float)countTag(tag) + (float)seen));
}
}
// Kneser Ney Smoothing is shelved due to time constraint
private class KneserNey extends SmoothScheme {
public KneserNey(HashMap<String, Integer> wordFreq, HashMap<String, Integer> tagFreq, HashMap<String, Integer> wordTagFreq, HashMap<String, Integer> prevCurrTagFreq) {
super(wordFreq, tagFreq, wordTagFreq, prevCurrTagFreq);
}
public float getBigramTransition(String prevTag, String currTag) {
// TODO: Transition Probability: P(tag|prev-tag) = alpha(prev-tag) x prev-count(prev-tag, tag) / sum(prev-count(prev-tag, all seen tags))
// alpha(prev-tag) = [1 - sum(discounted_probability(all seen tags|prev-tag)] / [1 - sum(discounted_probability(all seen tags)]
return 0;
}
public float getBigramEmission(String word, String tag) {
// TODO: Emission Probability: P(word|tag) = alpha(tag) x prev-count(tag, word) / sum(prev-count(tag, all seen words))
// alpha(prev-tag) = [1 - sum(discounted_probability(all seen words|tag)] / [1 - sum(discounted_probability(all seen words)]
return 0;
}
}
/**
* This method creates the word and tag frequency tables
* based on the provided corpus.
*
* @param corpus
*/
private void indexCorpus(List<String[]> corpus) {
String prevWord, currWord, prevTag, currTag, prevCurrTag;
String[] currWordTag;
String prev = "", curr = "";
wordFreq = new HashMap<String, Integer>();
tagFreq = new HashMap<String, Integer>();
wordTagFreq = new HashMap<String, Integer>();
prevCurrTagFreq = new HashMap<String, Integer>();
for (String[] sentence : corpus) {
for (int index = 0; index < sentence.length; index++) {
curr = sentence[index];
currWordTag = splitElement(curr);
currWord = currWordTag[0];
currTag = currWordTag[1];
incrementFreqTable(wordFreq, currWord);
incrementFreqTable(tagFreq, currTag);
incrementFreqTable(wordTagFreq, curr);
if (index == 0) {
incrementFreqTable(tagFreq, startTag);
prevTag = startTag;
} else {
prev = sentence[index - 1];
prevTag = splitElement(prev)[1];
}
prevCurrTag = prevTag + separator + currTag;
incrementFreqTable(prevCurrTagFreq, prevCurrTag);
}
}
uniqueWords = new ArrayList<String>(wordFreq.keySet());
Collections.sort(uniqueWords);
uniqueTags = new ArrayList<String>(tagFreq.keySet());
Collections.sort(uniqueTags);
}
/**
* This method creates the transition probability matrix
* prior to any testing or tuning.
*/
private void buildTransitionMatrix() {
String prevTag, currTag, prevCurrTag;
transitionProbMatrix = new HashMap<String, Float>();
for (int row = 0; row < uniqueTags.size(); row++) {
currTag = uniqueTags.get(row);
for (int col = 0; col < uniqueTags.size(); col++) {
prevTag = uniqueTags.get(col);
prevCurrTag = prevTag + separator + currTag;
float probability = (float)countPrevCurrTag(prevTag, currTag) / countTag(prevTag);
if (probability > 0) {
transitionProbMatrix.put(prevCurrTag, probability);
}
}
}
}
/**
* This method creates the emission probability matrix
* prior to any testing or tuning.
*/
private void buildEmissionMatrix() {
String currWord, currTag, wordTag;
emissionProbMatrix = new HashMap<String, Float>();
for (int row = 0; row < uniqueWords.size(); row++) {
currWord = uniqueWords.get(row);
for (int col = 0; col < uniqueTags.size(); col++) {
currTag = uniqueTags.get(col);
wordTag = currWord + separator + currTag;
float probability = (float)countWordTag(currWord, currTag) / countTag(currTag);
if (probability > 0) {
emissionProbMatrix.put(wordTag, probability);
}
}
}
}
/**
* This helper method removes the tags from a tagged corpus
* for testing and rating purposes. It returns the untagged
* version of the corpus.
*
* @param taggedCorpus
*
* @return List
*/
private List<String[]> getStrippedCorpus(List<String[]> taggedCorpus) {
List<String[]> untaggedTestSent = new ArrayList<String[]>();
for (String[] sentence : taggedCorpus) {
String[] strippedSentence = new String[sentence.length];
for (int index = 0; index < sentence.length; index++) {
strippedSentence[index] = splitElement(sentence[index])[0];
}
untaggedTestSent.add(strippedSentence);
}
return untaggedTestSent;
}
/**
* This method splits the word-tag string into its separate
* entities.
*
* @param element
*
* @return String[]
*/
private String[] splitElement(String element) {
int index = element.lastIndexOf(separator);
String word = element.substring(0, index);
String tag = element.substring(index, element.length()).replace(separator, "");
String[] splitString = new String[]{word, tag};
return splitString;
}
/*** Counters and Incrementers ***/
private int countWord(String word) {
Integer wordCount = wordFreq.get(word);
return (wordCount != null) ? (int)wordCount : 0;
}
private int countTag(String tag) {
Integer tagCount = tagFreq.get(tag);
return (tagCount != null) ? (int)tagCount : 0;
}
private int countWordTag(String word, String tag) {
String wordTag = word + separator + tag;
Integer wordTagCount = wordTagFreq.get(wordTag);
return (wordTagCount != null) ? (int)wordTagCount : 0;
}
private int countPrevCurrTag(String prevTag, String currTag) {
String prevCurrTag = prevTag + separator + currTag;
Integer prevCurrTagCount = prevCurrTagFreq.get(prevCurrTag);
return (prevCurrTagCount != null) ? (int)prevCurrTagCount : 0;
}
private void incrementFreqTable(HashMap<String, Integer> table, String key) {
Integer value = table.get(key);
value = (value != null) ? value + 1 : 1;
table.put(key, value);
}
private void initConstants() {
startTag = "<s>";
separator = "/";
}
/*** Serializable Methods ***/
private void writeObject(ObjectOutputStream serializer) throws IOException {
serializer.writeObject(smoothingMode);
serializer.writeObject(wordFreq);
serializer.writeObject(tagFreq);
serializer.writeObject(wordTagFreq);
serializer.writeObject(prevCurrTagFreq);
serializer.writeObject(transitionProbMatrix);
serializer.writeObject(emissionProbMatrix);
serializer.writeObject(uniqueWords);
serializer.writeObject(uniqueTags);
}
@SuppressWarnings("unchecked")
private void readObject(ObjectInputStream deserializer) throws IOException, ClassNotFoundException {
smoothingMode = (Technique) deserializer.readObject();
wordFreq = (HashMap<String, Integer>) deserializer.readObject();
tagFreq = (HashMap<String, Integer>) deserializer.readObject();
wordTagFreq = (HashMap<String, Integer>) deserializer.readObject();
prevCurrTagFreq = (HashMap<String, Integer>) deserializer.readObject();
transitionProbMatrix = (HashMap<String, Float>) deserializer.readObject();
emissionProbMatrix = (HashMap<String, Float>) deserializer.readObject();
uniqueWords = (List<String>) deserializer.readObject();
uniqueTags = (List<String>) deserializer.readObject();
initConstants();
}
}