-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuild_tagger.java
52 lines (51 loc) · 1.98 KB
/
build_tagger.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
/**
* build_tagger trains the POS tagger with sents.train
* and tunes the POS tagger parameters with sents.devt,
* then writes the output statistics to model_file
*
* @author Huang Lie Jun (A0123994W)
* @version 1.0
* @since 2017-10-08
*/
import java.util.*;
public class build_tagger {
/**
* This function will train a HMM model using training sentences,
* select the optimal smoothing scheme for the trained model using
* development sentences, perform a 10-fold validation on training
* sentences to acquire averaged accuracy and write model results
* to file for testing and actual tagging.
*
* @param trainFile File path to training sentences
* @param devFile File path to development sentences
* @param modelFile File path to write model data (params. and prob.)
*/
public static void main(String[] args) {
FileHandler trainFile, devFile, modelFile = null;
List<String[]> trainCorpus = null;
List<String[]> devCorpus = null;
if (args.length >= 3) {
trainFile = new FileHandler(args[0]);
trainFile.readFile();
trainCorpus = trainFile.getFileAsCorpus();
devFile = new FileHandler((args[1]));
devFile.readFile();
devCorpus = devFile.getFileAsCorpus();
modelFile = new FileHandler(args[2]);
} else {
System.err.println("Incorrect number of parameters.");
System.exit(-1);
}
Model posModel = new Model();
posModel.train(trainCorpus);
posModel.tune(devCorpus);
// Cross-validation is disabled in submission to save time as the values have already been recorded
/*
float validatedAccuracy = posModel.crossValidate(trainCorpus, 10);
System.out.println("Cross-validation accuracy of trained model: " + (validatedAccuracy * 100) + "%");
*/
if (modelFile != null) {
modelFile.writeFile(posModel);
}
}
}