forked from lh3/gfatools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgfa-asm.c
726 lines (675 loc) · 21 KB
/
gfa-asm.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#include "gfa-priv.h"
#include "kvec.h"
/********************************************
* Preprocessing up to transitive reduction *
********************************************/
typedef struct { uint32_t n, m; uint32_t *a; } gfa32_v;
// delete short arcs
int gfa_arc_del_short(gfa_t *g, int min_ovlp_len, float drop_ratio)
{
uint32_t v, n_vtx = gfa_n_vtx(g), n_short = 0;
for (v = 0; v < n_vtx; ++v) {
gfa_arc_t *av = gfa_arc_a(g, v);
uint32_t i, thres, nv = gfa_arc_n(g, v);
if (nv < 2) continue;
thres = (uint32_t)(av[0].ov * drop_ratio + .499);
if (thres < min_ovlp_len) thres = min_ovlp_len;
for (i = nv - 1; i >= 1 && av[i].ov < thres; --i);
for (i = i + 1; i < nv; ++i)
av[i].del = 1, ++n_short;
}
if (gfa_verbose >= 3) fprintf(stderr, "[M::%s] removed %d short overlaps\n", __func__, n_short);
if (n_short) {
gfa_cleanup(g);
gfa_fix_symm_del(g);
}
return n_short;
}
// delete multi-arcs
int gfa_arc_del_multi_risky(gfa_t *g)
{
uint32_t *cnt, n_vtx = gfa_n_vtx(g), n_multi = 0, v;
GFA_CALLOC(cnt, n_vtx);
for (v = 0; v < n_vtx; ++v) {
gfa_arc_t *av = gfa_arc_a(g, v);
int32_t i, nv = gfa_arc_n(g, v);
if (nv < 2) continue;
for (i = nv - 1; i >= 0; --i) ++cnt[av[i].w];
for (i = nv - 1; i >= 0; --i)
if (--cnt[av[i].w] != 0)
av[i].del = 1, ++n_multi;
}
free(cnt);
if (gfa_verbose >= 3 && n_multi > 0) fprintf(stderr, "[M::%s] removed %d multi-arcs\n", __func__, n_multi);
if (n_multi) gfa_cleanup(g);
return n_multi;
}
// remove asymmetric arcs: u->v is present, but v'->u' not
int gfa_arc_del_asymm_risky(gfa_t *g)
{
uint32_t e, n_asymm = 0;
for (e = 0; e < g->n_arc; ++e) {
uint32_t v = g->arc[e].w^1, u = g->arc[e].v_lv>>32^1;
uint32_t i, nv = gfa_arc_n(g, v);
gfa_arc_t *av = gfa_arc_a(g, v);
for (i = 0; i < nv; ++i)
if (av[i].w == u) break;
if (i == nv) g->arc[e].del = 1, ++n_asymm;
}
if (gfa_verbose >= 3 && n_asymm > 0) fprintf(stderr, "[M::%s] removed %d asymmetric arcs\n", __func__, n_asymm);
if (n_asymm) gfa_cleanup(g);
return n_asymm;
}
void gfa_fix_symm_del(gfa_t *g)
{
gfa_arc_del_multi_risky(g);
gfa_arc_del_asymm_risky(g);
}
// transitive reduction; see Myers, 2005; with Sergey Nurk's modification
int gfa_arc_del_trans(gfa_t *g, int fuzz)
{
uint8_t *mark;
uint32_t v, n_vtx = gfa_n_vtx(g), n_reduced = 0, *len;
GFA_CALLOC(mark, n_vtx);
GFA_CALLOC(len, n_vtx);
for (v = 0; v < n_vtx; ++v) {
uint32_t L, i, nv = gfa_arc_n(g, v);
gfa_arc_t *av = gfa_arc_a(g, v);
if (nv == 0) continue; // no hits
if (g->seg[v>>1].del) {
for (i = 0; i < nv; ++i) av[i].del = 1, ++n_reduced;
continue;
}
for (i = 0; i < nv; ++i) {
mark[av[i].w] = g->seg[av[i].w>>1].del? 2 : 1;
len[av[i].w] = gfa_arc_len(av[i]);
}
L = gfa_arc_len(av[nv-1]) + fuzz;
for (i = 0; i < nv; ++i) {
uint32_t w = av[i].w;
uint32_t j, nw = gfa_arc_n(g, w);
gfa_arc_t *aw = gfa_arc_a(g, w);
if (mark[av[i].w] != 1) continue;
for (j = 0; j < nw; ++j) {
uint32_t x, sum = gfa_arc_len(aw[j]) + gfa_arc_len(av[i]);
if (sum > L) break;
x = aw[j].w;
if (mark[x] == 1 && sum < len[x] + fuzz && sum + fuzz > len[x])
mark[x] = 2;
}
}
#if 0
for (i = 0; i < nv; ++i) {
uint32_t w = av[i].w;
uint32_t j, nw = gfa_arc_n(g, w);
gfa_arc_t *aw = gfa_arc_a(g, w);
for (j = 0; j < nw && (j == 0 || gfa_arc_len(aw[j]) < fuzz); ++j)
if (mark[aw[j].w]) mark[aw[j].w] = 2;
}
#endif
for (i = 0; i < nv; ++i) {
if (mark[av[i].w] == 2) av[i].del = 1, ++n_reduced;
mark[av[i].w] = 0;
}
}
free(len);
free(mark);
if (gfa_verbose >= 3) fprintf(stderr, "[M::%s] transitively reduced %d arcs\n", __func__, n_reduced);
if (n_reduced) {
gfa_cleanup(g);
gfa_fix_symm_del(g);
}
return n_reduced;
}
int gfa_arc_del_weak(gfa_t *g)
{
uint32_t n_vtx = gfa_n_vtx(g), v, n_abnormal = 0, n_del = 0;
for (v = 0; v < n_vtx; ++v) {
uint32_t i, nv = gfa_arc_n(g, v), n_strong = 0, top_strong = 0;
gfa_arc_t *av = gfa_arc_a(g, v);
for (i = 0; i < nv; ++i) {
if (!av[i].strong) continue;
if (n_strong == i) ++top_strong;
++n_strong;
}
if (n_strong == 0) continue;
if (top_strong == 0) {
++n_abnormal;
} else {
for (i = 0; i < nv; ++i)
if (!av[i].strong)
av[i].del = 1, ++n_del;
}
}
if (gfa_verbose >= 3 && n_del > 0)
fprintf(stderr, "[M::%s] removed %d weak arcs; %d abnormal arcs\n", __func__, n_del, n_abnormal);
if (n_del) {
gfa_cleanup(g);
gfa_fix_symm_del(g);
}
return n_del;
}
int gfa_arc_pair_strong(gfa_t *g)
{
uint32_t e, n_flip = 0;
for (e = 0; e < g->n_arc; ++e) {
uint32_t v, u, i, nv;
gfa_arc_t *av;
if (g->arc[e].strong == 0) continue;
v = g->arc[e].w^1;
u = g->arc[e].v_lv>>32^1;
nv = gfa_arc_n(g, v);
av = gfa_arc_a(g, v);
for (i = 0; i < nv; ++i)
if (av[i].w == u && av[i].strong == 0)
av[i].strong = 1, ++n_flip;
}
if (gfa_verbose >= 3 && n_flip > 0) fprintf(stderr, "[M::%s] added %d strong arcs\n", __func__, n_flip);
return n_flip;
}
/********************************
* Probe unitig ends from reads *
********************************/
#define GFA_VT_MERGEABLE 0
#define GFA_VT_TIP 1
#define GFA_VT_MULTI_OUT 2
#define GFA_VT_MULTI_IN 3
static inline int32_t gfa_deg(const gfa_t *g, uint32_t v) // compute out-degree, excluding deleted edges
{
uint32_t i, n, nv;
const gfa_arc_t *av;
if (g->seg[v>>1].del) return 0;
nv = gfa_arc_n(g, v);
av = gfa_arc_a(g, v);
for (i = n = 0; i < nv; ++i)
if (!av[i].del) ++n;
return n;
}
static inline int32_t gfa_deg2(const gfa_t *g, uint32_t v, uint32_t *w, int32_t *l)
{
uint32_t i, nv, nv0, k;
int32_t min_l;
const gfa_arc_t *av;
*l = 0, *w = (uint32_t)-1;
if (g->seg[v>>1].del) return 0;
min_l = g->seg[v>>1].len;
nv0 = k = gfa_arc_n(g, v);
av = gfa_arc_a(g, v);
for (i = nv = 0; i < nv0; ++i)
if (!av[i].del)
++nv, k = i, min_l = gfa_arc_len(av[i]) < min_l? gfa_arc_len(av[i]) : min_l;
*l = min_l;
*w = nv == 1? av[k].w : (uint32_t)-1;
return nv;
}
static inline int32_t gfa_vtype(const gfa_t *g, uint32_t v, uint32_t *w_, int32_t *l_)
{
int32_t nv, nw, l;
uint32_t w;
nv = gfa_deg2(g, v, &w, &l);
if (l_) *l_ = l;
if (w_) *w_ = w;
if (nv == 0) return GFA_VT_TIP;
if (nv > 1) return GFA_VT_MULTI_OUT;
nw = gfa_deg(g, w^1);
return nw == 1? GFA_VT_MERGEABLE : GFA_VT_MULTI_IN;
}
static inline int32_t gfa_uext(const gfa_t *g, uint32_t v, int32_t max_ext, int32_t *ne, int32_t *le, uint32_t *end_v, gfa32_v *a)
{
int32_t vt, n_ext = 0, l_ext = 0;
if (a) a->n = 0;
if (a) kv_push(uint32_t, *a, v);
if (end_v) *end_v = (uint32_t)-1;
do {
uint32_t w;
int32_t l;
vt = gfa_vtype(g, v, &w, &l);
l_ext += l;
if (end_v && (vt == GFA_VT_MERGEABLE || vt == GFA_VT_MULTI_IN)) *end_v = w;
if (vt != GFA_VT_MERGEABLE) break;
++n_ext;
if (a) kv_push(uint32_t, *a, w);
v = w;
} while (--max_ext > 0);
if (ne) *ne = n_ext;
if (le) *le = l_ext;
return vt;
}
/*************************
* Topological extension *
*************************/
typedef struct {
uint32_t p; // the optimal parent vertex
int32_t d; // the shortest distance from the initial vertex
uint32_t c; // max count of reads
uint32_t r:31, s:1; // r: the number of remaining incoming arc; s: whether the vertex has been visited before
} gfa_tinfo_t;
typedef struct {
gfa_tinfo_t *a;
kvec_t(uint32_t) S; // set of vertices without parents
kvec_t(uint32_t) b; // visited vertices
kvec_t(uint32_t) e; // visited edges/arcs
int32_t n_short_tip, n_sink, dist, self_cycle; // n_short_tip: number of branching short tips; n_sink: number of sinks; dist: min distance from the input vertex
uint32_t v_sink; // end vertex; dist and v_sink only set when n_sink>0
} gfa_tbuf_t;
#define GFA_TE_THRU_SHORT_TIP 0x1
#define GFA_TE_THRU_BUBBLE 0x2
static gfa_tbuf_t *gfa_tbuf_init(const gfa_t *g)
{
uint32_t v, n_vtx = gfa_n_vtx(g);
gfa_tbuf_t *b;
GFA_CALLOC(b, 1);
GFA_CALLOC(b->a, gfa_n_vtx(g));
for (v = 0; v < n_vtx; ++v)
b->a[v].p = (uint32_t)-1, b->a[v].d = INT32_MIN;
return b;
}
static void gfa_tbuf_destroy(gfa_tbuf_t *b)
{
if (b == 0) return;
free(b->a); free(b->S.a); free(b->b.a); free(b->e.a);
free(b);
}
static void gfa_tbuf_reset(gfa_tbuf_t *b)
{
uint32_t i;
for (i = 0; i < b->b.n; ++i) { // clear the states of visited vertices
gfa_tinfo_t *t = &b->a[b->b.a[i]];
t->s = t->c = t->r = 0, t->p = (uint32_t)-1, t->d = INT32_MIN;
}
}
static int32_t gfa_topo_ext(const gfa_t *g, uint32_t v0, int32_t max_dist, int32_t thru_flag, gfa_tbuf_t *b)
{
uint32_t i, n_pending = 0; // n_pending: number of visited vertices that are not sorted
int32_t max_d = INT32_MIN; // max_d: max gfa_tinfo_t::d of visited vertices
gfa_tinfo_t *t;
b->S.n = b->b.n = b->e.n = 0;
b->n_short_tip = b->n_sink = 0, b->dist = 0, b->self_cycle = 0, b->v_sink = (uint32_t)-1;
if (g->seg[v0>>1].del) return 0;
t = &b->a[v0];
t->p = (uint32_t)-1, t->r = 0, t->c = t->d = t->s = 0; // ->s has to be 0, as gfa_tbuf_reset() doesn't reset the initial vertex
kv_push(uint32_t, b->S, v0);
while (b->S.n > 0 && max_d <= max_dist) {
uint32_t v = kv_pop(b->S), nv = gfa_arc_n(g, v);
int32_t d = b->a[v].d, c = b->a[v].c;
gfa_arc_t *av = gfa_arc_a(g, v);
if (b->S.n == 0 && n_pending == 0) { // a sink vertex
b->dist = d, b->v_sink = v;
if (v != v0) { // exclude the input vertex
++b->n_sink;
if (!(thru_flag & GFA_TE_THRU_BUBBLE)) break;
}
}
if (gfa_deg(g, v) == 0) { // a tip
if (d + (int32_t)g->seg[v>>1].len < max_dist) { // a tip shorter than max_dist
if (b->S.n || n_pending) ++b->n_short_tip; // don't count a tip if it is the end of a bubble chain
if (thru_flag & GFA_TE_THRU_SHORT_TIP) continue;
else break;
} else break; // if we come here, we have a tip beyond max_dist; we stop
}
for (i = 0; i < nv; ++i) { // loop through v's neighbors
uint32_t w = av[i].w;
int32_t l = (int32_t)av[i].v_lv; // u->w with length l
gfa_tinfo_t *t = &b->a[w];
if (av[i].del) continue;
if (w>>1 == v0>>1) {
b->self_cycle |= w == v0? 1 : 2; // cycle or bidirected cycle involving the input vertex
break;
}
kv_push(uint32_t, b->e, (g->idx[v]>>32) + i); // save the edge
if (t->s == 0) { // this vertex has never been visited
kv_push(uint32_t, b->b, w); // save it for gfa_tbuf_reset()
t->p = v, t->s = 1, t->d = d + l, t->c = c + 1;
t->r = gfa_deg(g, w^1);
++n_pending;
} else { // visited before
if (c + 1 > t->c || (c + 1 == t->c && d + l > t->d)) t->p = v;
if (c + 1 > t->c) t->c = c + 1;
if (d + l < t->d) t->d = d + l; // update dist
}
max_d = max_d > t->d? max_d : t->d;
assert(t->r > 0);
if (--(t->r) == 0) {
kv_push(uint32_t, b->S, w);
--n_pending;
}
}
if (i < nv) break;
}
return b->n_sink;
}
/************************
* Basic graph cleaning *
************************/
int gfa_drop_tip(gfa_t *g, int tip_cnt, int tip_len)
{
gfa32_v a = {0,0,0};
uint32_t n_vtx = gfa_n_vtx(g), v, i, cnt = 0;
for (v = 0; v < n_vtx; ++v) {
int32_t l_ext, vt;
if (g->seg[v>>1].del) continue;
if (gfa_deg(g, v^1) != 0) continue; // not a tip
vt = gfa_uext(g, v, tip_cnt, 0, &l_ext, 0, &a);
if (vt == GFA_VT_MERGEABLE) continue; // not a short unitig
if (l_ext > tip_len) continue; // tip too long
for (i = 0; i < a.n; ++i)
gfa_seg_del(g, a.a[i]>>1);
++cnt;
}
free(a.a);
if (cnt > 0) gfa_cleanup(g);
if (gfa_verbose >= 3) fprintf(stderr, "[M::%s] drop %d tips\n", __func__, cnt);
return cnt;
}
int gfa_drop_internal(gfa_t *g, int max_ext)
{
gfa32_v a = {0,0,0};
uint32_t n_vtx = gfa_n_vtx(g), v, i, cnt = 0;
for (v = 0; v < n_vtx; ++v) {
int32_t l_ext;
if (g->seg[v>>1].del) continue;
if (gfa_vtype(g, v^1, 0, 0) != GFA_VT_MULTI_IN) continue;
if (gfa_uext(g, v, max_ext, 0, &l_ext, 0, &a) != GFA_VT_MULTI_IN) continue;
for (i = 0; i < a.n; ++i)
gfa_seg_del(g, a.a[i]>>1);
++cnt;
}
free(a.a);
fprintf(stderr, "[M::%s] cut %d internal sequences\n", __func__, cnt);
if (cnt > 0) gfa_cleanup(g);
return cnt;
}
static inline int32_t gfa_is_extended(const gfa_t *g, uint32_t v, int32_t min_dist, int32_t max_dist, gfa_tbuf_t *b)
{
if (g->seg[v>>1].len >= min_dist) return 1;
gfa_topo_ext(g, v, max_dist, GFA_TE_THRU_BUBBLE, b);
gfa_tbuf_reset(b);
return b->dist > min_dist? 1 : 0;
}
int gfa_cut_z(gfa_t *g, int32_t min_dist, int32_t max_dist)
{
uint32_t n_cut = 0;
int64_t e;
gfa_tbuf_t *b;
assert(min_dist < max_dist);
b = gfa_tbuf_init(g);
for (e = 0; e < g->n_arc; ++e) {
gfa_arc_t *a = &g->arc[e], *av, *aw;
uint32_t v, w, u[2];
if (a->del) continue;
v = a->v_lv>>32, w = a->w^1;
if (gfa_arc_n(g, v) != 2 || gfa_arc_n(g, w) != 2) continue;
av = gfa_arc_a(g, v);
aw = gfa_arc_a(g, w);
if (av[0].del || av[1].del || aw[0].del || aw[1].del) continue;
assert(av[0].w == (w^1) || av[1].w == (w^1));
assert(aw[0].w == (v^1) || aw[1].w == (v^1));
u[0] = av[0].w != (w^1)? av[0].w : av[1].w;
u[1] = aw[0].w != (v^1)? aw[0].w : aw[1].w;
if (gfa_deg(g, u[0]^1) != 1) continue;
if (gfa_deg(g, u[1]^1) != 1) continue;
if (!gfa_is_extended(g, v^1, min_dist, max_dist, b)) continue;
if (!gfa_is_extended(g, w^1, min_dist, max_dist, b)) continue;
if (!gfa_is_extended(g, u[0], min_dist, max_dist, b)) continue;
if (!gfa_is_extended(g, u[1], min_dist, max_dist, b)) continue;
a->del = 1;
gfa_arc_del(g, w, v^1, 1);
++n_cut;
}
gfa_tbuf_destroy(b);
fprintf(stderr, "[M::%s] cut %d Z-junctions\n", __func__, n_cut);
if (n_cut > 0) gfa_cleanup(g);
return n_cut;
}
int gfa_topocut(gfa_t *g, float drop_ratio, int32_t tip_cnt, int32_t tip_len)
{
uint32_t n_vtx = gfa_n_vtx(g), v, n_cut = 0;
uint64_t k, n_b = 0, *b;
// collect all overlaps at bifurcations
assert(g->n_arc < UINT32_MAX);
GFA_MALLOC(b, g->n_arc); // FIXME: we don't need an array this large, but probably it doesn't matter.
for (v = 0; v < n_vtx; ++v) {
gfa_arc_t *av = gfa_arc_a(g, v);
uint32_t i, nv = gfa_arc_n(g, v);
if (nv < 2) continue;
for (i = 0; i < nv; ++i)
b[n_b++] = (uint64_t)av[i].ov << 32 | (av - g->arc + i);
}
radix_sort_gfa64(b, b + n_b);
// test each edge
for (k = 0; k < n_b; ++k) {
gfa_arc_t *a = &g->arc[(uint32_t)b[k]];
uint32_t i, iv, iw, v = a->v_lv>>32, w = a->w^1, to_del = 0;
uint32_t nv = gfa_arc_n(g, v), nw = gfa_arc_n(g, w), kv, kw;
uint32_t ov_max = 0, ow_max = 0;
int32_t vt, l_ext;
gfa_arc_t *av, *aw;
if (nv == 1 && nw == 1) continue;
av = gfa_arc_a(g, v);
aw = gfa_arc_a(g, w);
for (i = 0, kv = 0; i < nv; ++i) {
if (av[i].del) continue;
if (ov_max < av[i].ov) ov_max = av[i].ov;
++kv;
}
if (kv >= 2 && a->ov > ov_max * drop_ratio) continue;
for (i = 0, kw = 0; i < nw; ++i) {
if (aw[i].del) continue;
if (ow_max < aw[i].ov) ow_max = aw[i].ov;
++kw;
}
if (kw >= 2 && a->ow > ow_max * drop_ratio) continue;
if (kv == 1 && kw == 1) continue;
for (iv = 0; iv < nv; ++iv)
if (av[iv].w == (w^1)) break;
assert(iv < nv);
for (iw = 0; iw < nw; ++iw)
if (aw[iw].w == (v^1)) break;
assert(iw < nw);
assert(av[iv].del == aw[iw].del);
if (av[iv].del && aw[iw].del) continue;
if (kv > 1 && kw > 1) {
if (a->ov < ov_max * drop_ratio && a->ow < ow_max * drop_ratio)
to_del = 1;
} else if (kw == 1) {
vt = gfa_uext(g, w^1, tip_cnt, 0, &l_ext, 0, 0);
//if (vt != GFA_VT_MERGEABLE && l_ext < tip_len) to_del = 1;
if (vt == GFA_VT_MULTI_IN && l_ext < tip_len) to_del = 1;
} else if (kv == 1) {
vt = gfa_uext(g, v^1, tip_cnt, 0, &l_ext, 0, 0);
//if (vt != GFA_VT_MERGEABLE && l_ext < tip_len) to_del = 1;
if (vt == GFA_VT_MULTI_IN && l_ext < tip_len) to_del = 1;
}
if (to_del)
av[iv].del = aw[iw].del = 1, ++n_cut;
}
free(b);
if (gfa_verbose >= 3) fprintf(stderr, "[M::%s] %d topology-aware cuts\n", __func__, n_cut);
if (n_cut) {
gfa_cleanup(g);
gfa_fix_symm_del(g);
}
return n_cut;
}
/******************
* Bubble popping *
******************/
// in a resolved bubble, mark unused vertices and arcs as "reduced"
static void gfa_bub_backtrack(gfa_t *g, uint32_t v0, int max_del, gfa_tbuf_t *b)
{
uint32_t i, v;
assert(b->S.n == 0);
if (max_del > 0) {
int32_t n_kept = 0;
v = b->v_sink;
do { ++n_kept, v = b->a[v].p; } while (v != v0);
if (b->b.n - n_kept > max_del) return;
}
for (i = 0; i < b->b.n; ++i)
g->seg[b->b.a[i]>>1].del = 1;
for (i = 0; i < b->e.n; ++i) {
gfa_arc_t *a = &g->arc[b->e.a[i]];
a->del = 1;
gfa_arc_del(g, a->w^1, a->v_lv>>32^1, 1);
}
v = b->v_sink;
do {
uint32_t u = b->a[v].p; // u->v
g->seg[v>>1].del = 0;
gfa_arc_del(g, u, v, 0);
gfa_arc_del(g, v^1, u^1, 0);
v = u;
} while (v != v0);
}
// pop bubbles from vertex v0; the graph MUST BE symmetric: if u->v present, v'->u' must be present as well
static int32_t gfa_bub_pop1(gfa_t *g, uint32_t v0, int radius, int max_del, int protect_tip, gfa_tbuf_t *b) // radius is calculated from the end of v0, not the start
{
uint64_t ret = 0;
if (gfa_deg(g, v0) < 2) return 0; // no bubbles
gfa_topo_ext(g, v0, g->seg[v0>>1].len + radius, protect_tip? 0 : GFA_TE_THRU_SHORT_TIP, b);
if (b->n_sink) {
gfa_bub_backtrack(g, v0, max_del, b);
ret = 1 | (uint64_t)b->n_short_tip << 32;
}
gfa_tbuf_reset(b);
return ret;
}
// pop bubbles
int gfa_pop_bubble(gfa_t *g, int radius, int max_del, int protect_tip)
{
uint32_t v, n_vtx = gfa_n_vtx(g);
uint64_t n_pop = 0;
gfa_tbuf_t *b;
b = gfa_tbuf_init(g);
for (v = 0; v < n_vtx; ++v)
if (!g->seg[v>>1].del && gfa_deg(g, v) >= 2)
n_pop += gfa_bub_pop1(g, v, radius, max_del, protect_tip, b);
gfa_tbuf_destroy(b);
if (n_pop) gfa_cleanup(g);
if (gfa_verbose >= 3) fprintf(stderr, "[M::%s] popped %d bubbles and trimmed short %d tips\n", __func__, (uint32_t)n_pop, (uint32_t)(n_pop>>32));
return n_pop;
}
/****************
* Unitig graph *
****************/
#include "kdq.h"
KDQ_INIT(uint64_t)
#define arc_cnt(g, v) ((uint32_t)(g)->idx[(v)])
#define arc_first(g, v) ((g)->arc[(g)->idx[(v)]>>32])
gfa_t *gfa_ug_gen(const gfa_t *g)
{
int32_t *mark;
uint32_t i, v, n_vtx = gfa_n_vtx(g);
kdq_t(uint64_t) *q;
gfa_t *ug;
ug = gfa_init();
mark = (int32_t*)calloc(n_vtx, 4);
q = kdq_init(uint64_t, 0);
for (v = 0; v < n_vtx; ++v) {
uint32_t w, x, l, start, end, len, tmp, len_r, gen_seq = 0;
char utg_name[12];
gfa_seg_t *u;
gfa_arc_t *a;
if (g->seg[v>>1].del || mark[v]) continue;
mark[v] = 1;
q->count = 0, start = v, end = v^1, len = len_r = 0;
// forward
w = v;
while (1) {
if (arc_cnt(g, w) != 1) break;
x = arc_first(g, w).w; // w->x
if (arc_cnt(g, x^1) != 1) break;
mark[x] = mark[w^1] = 1;
a = &arc_first(g, w);
l = gfa_arc_len(*a);
kdq_push(uint64_t, q, (uint64_t)w<<32 | l);
end = x^1, len += l, len_r += gfa_arc_lw(g, *a);
w = x;
if (x == v) break;
}
if (start != (end^1) || kdq_size(q) == 0) { // linear unitig
l = g->seg[end>>1].len;
kdq_push(uint64_t, q, (uint64_t)(end^1)<<32 | l);
len += l;
} else { // circular unitig
start = end = UINT32_MAX;
goto add_unitig; // then it is not necessary to do the backward
}
// backward
x = v;
while (1) { // similar to forward but not the same
if (arc_cnt(g, x^1) != 1) break;
w = arc_first(g, x^1).w ^ 1; // w->x
if (arc_cnt(g, w) != 1) break;
mark[x] = mark[w^1] = 1;
a = &arc_first(g, w);
l = gfa_arc_len(*a);
kdq_unshift(uint64_t, q, (uint64_t)w<<32 | l);
start = w, len += l, len_r += gfa_arc_lw(g, *a);
x = w;
}
len_r += g->seg[start>>1].len;
add_unitig:
if (start != UINT32_MAX) mark[start] = mark[end] = 1;
sprintf(utg_name, "utg%.7d%c", ug->n_seg + 1, start == UINT32_MAX? 'c' : 'l');
tmp = gfa_add_seg(ug, utg_name);
u = &ug->seg[tmp];
u->seq = 0, u->len = len;
GFA_MALLOC(u->utg, 1);
u->utg->start = start, u->utg->end = end, u->utg->n = kdq_size(q), u->circ = (start == UINT32_MAX);
u->utg->m = u->utg->n;
kroundup32(u->utg->m);
GFA_MALLOC(u->utg->a, u->utg->m);
GFA_MALLOC(u->utg->r, u->utg->m);
GFA_MALLOC(u->utg->name, u->utg->m);
u->utg->len_comp = len_r;
for (i = 0, gen_seq = 1; i < kdq_size(q); ++i) {
u->utg->a[i] = kdq_at(q, i);
w = u->utg->a[i] >> 32;
u->utg->name[i] = gfa_strdup(g->seg[w>>1].name);
u->utg->r[i] = g->seg[w>>1].len; // the start position is always 0
if (g->seg[w>>1].seq == 0) gen_seq = 0;
}
if (gen_seq) {
GFA_MALLOC(u->seq, u->len + 1);
for (i = l = 0; i < u->utg->n; ++i) {
uint32_t j, w = u->utg->a[i]>>32, x = (uint32_t)u->utg->a[i];
const gfa_seg_t *s = &g->seg[w>>1];
if ((w&1) == 0) { // forward strand
memcpy(&u->seq[l], s->seq, x);
} else { // reverse strand
for (j = 0; j < x; ++j)
u->seq[l + j] = gfa_comp_table[(uint8_t)s->seq[s->len - 1 - j]];
}
l += x;
}
u->seq[u->len] = 0;
}
}
kdq_destroy(uint64_t, q);
// add arcs between unitigs; reusing mark for a different purpose
for (v = 0; v < n_vtx; ++v) mark[v] = -1;
for (i = 0; i < ug->n_seg; ++i) {
if (ug->seg[i].circ) continue;
mark[ug->seg[i].utg->start] = i<<1 | 0;
mark[ug->seg[i].utg->end] = i<<1 | 1;
}
for (i = 0; i < g->n_arc; ++i) {
gfa_arc_t *p = &g->arc[i];
if (p->del) continue;
if (mark[p->v_lv>>32^1] >= 0 && mark[p->w] >= 0) {
gfa_seg_t *s1 = &ug->seg[mark[p->v_lv>>32^1]>>1];
gfa_seg_t *s2 = &ug->seg[mark[p->w]>>1];
int ov = p->ov, ow = p->ow;
if (ov >= s1->len) ov = s1->len - 1;
if (ow >= s2->len) ow = s2->len - 1;
gfa_add_arc1(ug, mark[p->v_lv>>32^1]^1, mark[p->w], ov, ow, -1, 0);
}
}
free(mark);
gfa_finalize(ug);
return ug;
}