-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparkiran_offline.py
154 lines (123 loc) · 4.16 KB
/
parkiran_offline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import os
import sys
import time
sys.path.append(os.path.abspath(os.path.join('Mask_RCNN')))
os.chdir('Mask_RCNN')
cwd = os.getcwd()
print("Current working directory: {0}".format(cwd))
import numpy as np
import cv2
import mrcnn.config
import mrcnn.utils
from mrcnn.model import MaskRCNN
from pathlib import Path
import pickle5 as pickle
from shapely.geometry import box
from shapely.geometry import Polygon as shapely_poly
from IPython.display import clear_output, Image, display, HTML
import io
import base64
class Config(mrcnn.config.Config):
NAME = "coco_pretrained_model_config"
IMAGES_PER_GPU = 1
GPU_COUNT = 1
NUM_CLASSES = 81
config = Config()
config.display()
ROOT_DIR = Path(".")
MODEL_DIR = os.path.join(ROOT_DIR, "logs")
COCO_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5")
if not os.path.exists(COCO_MODEL_PATH):
mrcnn.utils.download_trained_weights(COCO_MODEL_PATH)
model = MaskRCNN(mode="inference", model_dir=MODEL_DIR, config=Config())
model.load_weights(COCO_MODEL_PATH, by_name=True)
# if not os.path.exists("./data"):
# os.makedirs("./data")
VIDEO_SOURCE = "data/out4.mp4"
PARKING_REGIONS = "data/testing.p"
with open(PARKING_REGIONS, 'rb') as f:
parked_car_boxes = pickle.load(f)
def get_car_boxes(boxes, class_ids):
car_boxes = []
for i, box in enumerate(boxes):
# If the detected object isn't a car / truck, skip it
if class_ids[i] in [3, 8, 6]:
car_boxes.append(box)
return np.array(car_boxes)
def compute_overlaps(parked_car_boxes, car_boxes):
new_car_boxes = []
for box in car_boxes:
y1 = box[0]
x1 = box[1]
y2 = box[2]
x2 = box[3]
p1 = (x1, y1)
p2 = (x2, y1)
p3 = (x2, y2)
p4 = (x1, y2)
new_car_boxes.append([p1, p2, p3, p4])
overlaps = np.zeros((len(parked_car_boxes), len(new_car_boxes)))
for i in range(len(parked_car_boxes)):
for j in range(car_boxes.shape[0]):
pol1_xy = parked_car_boxes[i]
pol2_xy = new_car_boxes[j]
polygon1_shape = shapely_poly(pol1_xy)
polygon2_shape = shapely_poly(pol2_xy)
polygon_intersection = polygon1_shape.intersection(polygon2_shape).area
polygon_union = polygon1_shape.union(polygon2_shape).area
IOU = polygon_intersection / polygon_union
overlaps[i][j] = IOU
return overlaps
def arrayShow (imageArray):
ret, png = cv2.imencode('.png', imageArray)
encoded = base64.b64encode(png)
return Image(data=encoded.decode('ascii'))
alpha = 0.6
cnt=0
#print(video_capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
#print(video_capture.get(cv2.CAP_PROP_FRAME_WIDTH))
video_capture = cv2.VideoCapture(1)
previous_time = 0
while(True):
current_time = time.time()
delta_time = current_time - previous_time
if delta_time <= 5:
#print(delta_time)
#print("continue")
continue
else:
previous_time = current_time
#video_capture = cv2.VideoCapture(1)
#time.sleep(5)
if video_capture.isOpened():
success, frame = video_capture.read()
#video_capture.release()
if success and frame is None:
print("camera failed")
break
cv2.imshow('output', frame)
cv2.normalize(frame, frame, 0, 255, cv2.NORM_MINMAX)
overlay = frame.copy()
rgb_image = frame[:, :, ::-1]
results = model.detect([rgb_image], verbose=0)
car_boxes = get_car_boxes(results[0]['rois'], results[0]['class_ids'])
if car_boxes.any():
overlaps = compute_overlaps(parked_car_boxes, car_boxes)
cnt=0
#print(overlaps)
for parking_area, overlap_areas in zip(parked_car_boxes, overlaps):
max_IoU_overlap = np.max(overlap_areas)
if max_IoU_overlap < 0.15:
cv2.fillPoly(overlay, [np.array(parking_area)], (71, 27, 92))
free_space = True
cnt+=1
cv2.addWeighted(overlay, alpha, frame, 1 - alpha, 0, frame)
file = open("space.txt", "w")
cnt_str = repr(cnt)
file.write(cnt_str)
file.close()
print(cnt)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
video_capture.release()
cv2.destroyAllWindows()