-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathload_balance_actor_critic_train.py
366 lines (288 loc) · 12.9 KB
/
load_balance_actor_critic_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import os
os.environ['CUDA_VISIBLE_DEVICES']=''
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
import matplotlib
matplotlib.use('agg')
import time
import multiprocessing as mp
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from utils import *
from param import *
import environments as envs
from load_balance_actor_agent import *
from critic_agent import *
from average_reward import *
from tensorboard_summaries import *
from actor_critic_test import run_test
def training_agent(agent_id, params_queue, reward_queue, adv_queue, gradient_queue):
np.random.seed(agent_id) # for environment
tf.set_random_seed(agent_id) # for model evolving
sess = tf.Session()
# set up actor agent for training
actor_agent = ActorAgent(sess)
critic_agent = CriticAgent(sess,
input_dim=args.num_workers + 2)
# set up envrionemnt
env = envs.make(args.env)
# collect experiences
while True:
# get parameters from master
(actor_params, critic_params, entropy_weight) = \
params_queue.get()
# synchronize model parameters
actor_agent.set_params(actor_params)
critic_agent.set_params(critic_params)
# reset environment
env.reset()
# set up training storage
batch_inputs, batch_act_vec, batch_values, batch_wall_time, batch_reward = \
[], [], [], [], []
# run experiment
state = env.observe()
done = False
while not done:
# decompose state (for storing infomation)
workers, job, curr_time = state
inputs = np.zeros([1, args.num_workers + 1])
for worker in workers:
inputs[0, worker.worker_id] = \
min(sum(j.size for j in worker.queue) / \
args.job_size_norm_factor / 5.0, # normalization
20.0)
inputs[0, -1] = min(job.size / \
args.job_size_norm_factor, 10.0) # normalization
# draw an action
action = actor_agent.predict(inputs)[0]
# store input and action
batch_inputs.append(inputs)
act_vec = np.zeros([1, args.num_workers])
act_vec[0, action] = 1
batch_act_vec.append(act_vec)
# store wall time
batch_wall_time.append(curr_time)
# interact with environment
state, reward, done = env.step(action)
# scale reward for training
reward /= args.reward_scale
# store reward
batch_reward.append(reward)
# store final time
batch_wall_time.append(env.wall_time.curr_time)
# compute all values
value_inputs = np.zeros([len(batch_inputs), args.num_workers + 2])
for i in range(len(batch_inputs)):
value_inputs[i, :-1] = batch_inputs[i]
value_inputs[i, -1] = batch_wall_time[i] / float(batch_wall_time[-1])
batch_values = critic_agent.predict(value_inputs)
# summarize more info for master agent
unfinished_jobs = sum(len(worker.queue) for worker in env.workers)
unfinished_jobs += sum(worker.curr_job is not None for worker in env.workers)
finished_work = sum(j.size for j in env.finished_jobs)
unfinished_work = 0
for worker in env.workers:
for j in worker.queue:
unfinished_work += j.size
if worker.curr_job is not None:
unfinished_work += worker.curr_job.size
average_job_duration = np.mean([
j.finish_time - j.arrival_time for j in env.finished_jobs])
# report rewards to master agent
reward_queue.put([
batch_reward, np.array(batch_values), batch_wall_time,
len(env.finished_jobs), unfinished_jobs,
finished_work, unfinished_work, average_job_duration])
# get advantage term
batch_adv, batch_actual_value = adv_queue.get()
# conpute gradient
actor_gradient, loss = actor_agent.compute_gradients(
batch_inputs, batch_act_vec, batch_adv, entropy_weight)
critic_gradient, _ = critic_agent.compute_gradients(
value_inputs, batch_actual_value)
# send back gradients
gradient_queue.put([actor_gradient, critic_gradient, loss])
sess.close()
def main():
np.random.seed(args.seed)
tf.set_random_seed(args.seed)
# create result and model folder
create_folder_if_not_exists(args.result_folder)
create_folder_if_not_exists(args.model_folder)
# initialize communication queues
params_queues = [mp.Queue(1) for _ in range(args.num_agents)]
reward_queues = [mp.Queue(1) for _ in range(args.num_agents)]
adv_queues = [mp.Queue(1) for _ in range(args.num_agents)]
gradient_queues = [mp.Queue(1) for _ in range(args.num_agents)]
# set up training agents
agents = []
for i in range(args.num_agents):
agents.append(mp.Process(target=training_agent, args=(
i, params_queues[i], reward_queues[i],
adv_queues[i], gradient_queues[i])))
# start training agents
for i in range(args.num_agents):
agents[i].start()
# set up central session
sess = tf.Session()
# set up actor agent in master thread
actor_agent = ActorAgent(sess)
# set up critic agent in master thread
critic_agent = CriticAgent(sess,
input_dim=args.num_workers + 2)
# initialize model parameters
sess.run(tf.global_variables_initializer())
# set up logging processes
saver = tf.train.Saver(max_to_keep=args.num_saved_models)
summary_ops, summary_vars = build_load_balance_tf_summaries()
writer = tf.summary.FileWriter(
args.result_folder + \
time.strftime("%Y-%m-%d %H:%M:%S", time.gmtime()))
# load trained model
if args.saved_model is not None:
saver.restore(sess, args.saved_model)
# initialize environment parameters
entropy_weight = args.entropy_weight_init
reset_prob = args.reset_prob
num_stream_jobs = args.num_stream_jobs
# initialize worker service rates
if args.service_rates is not None:
assert len(args.service_rates) == args.num_workers
service_rates = args.service_rates
else:
service_rates = [np.random.uniform(
args.service_rate_min, args.service_rate_max) \
for _ in range(args.num_workers)]
# store average reward for computing differential rewards
avg_reward_calculator = AveragePerStepReward(args.average_reward_storage)
# Performance monitoring
all_iters = []
all_perf = [[], [], []] # mean - std, mean, mean + std
# ---- start training process ----
for ep in range(1, args.num_ep):
print('training epoch', ep)
# synchronize the model parameters for each training agent
actor_params = actor_agent.get_params()
critic_params = critic_agent.get_params()
# send out parameters to training agents
for i in range(args.num_agents):
params_queues[i].put([
actor_params, critic_params, entropy_weight])
# storage for advantage computation
all_reward, all_values, all_wall_time, all_diff_time, all_eps_duration, \
all_eps_finished_jobs, all_eps_unfinished_jobs, \
all_eps_finished_work, all_eps_unfinished_work, \
all_average_job_duration = \
[], [], [], [], [], [], [], [], [], []
t1 = time.time()
# update average reward
for i in range(args.num_agents):
batch_reward, batch_values, batch_wall_time, \
eps_finished_jobs, eps_unfinished_jobs, \
eps_finished_work, eps_unfinished_work, \
average_job_duration = \
reward_queues[i].get()
batch_diff_time = np.array(batch_wall_time[1:]) - np.array(batch_wall_time[:-1])
avg_reward_calculator.add_list_filter_zero(batch_reward, batch_diff_time)
all_reward.append(batch_reward)
all_values.append(batch_values)
# for diff reward
all_wall_time.append(batch_wall_time[:-1])
all_diff_time.append(batch_diff_time)
# for tensorboard
all_eps_duration.append(batch_wall_time[-1])
all_eps_finished_jobs.append(eps_finished_jobs)
all_eps_unfinished_jobs.append(eps_unfinished_jobs)
all_eps_finished_work.append(eps_finished_work)
all_eps_unfinished_work.append(eps_unfinished_work)
all_average_job_duration.append(average_job_duration)
t2 = time.time()
print('got reward info from workers', t2 - t1, 'seconds')
# compute differential reward
all_cum_reward = []
avg_per_step_reward = avg_reward_calculator.get_avg_per_step_reward()
for i in range(args.num_agents):
if args.diff_reward:
# differential reward mode on
rewards = np.array([r - avg_per_step_reward * t for \
(r, t) in zip(all_reward[i], all_diff_time[i])])
else:
# regular reward
rewards = np.array([r for \
(r, t) in zip(all_reward[i], all_diff_time[i])])
cum_reward = discount(rewards, args.gamma)
all_cum_reward.append(cum_reward)
# give worker back the advantage
for i in range(args.num_agents):
all_cum_reward[i] = np.reshape(all_cum_reward[i],
[len(all_cum_reward[i]), 1])
batch_adv = all_cum_reward[i] - all_values[i]
adv_queues[i].put([batch_adv, all_cum_reward[i]])
t3 = time.time()
print('advantage ready', t3 - t2, 'seconds')
actor_gradients = []
critic_gradients = []
all_action_loss = [] # for tensorboard
all_entropy = [] # for tensorboard
all_value_loss = [] # for tensorboard
for i in range(args.num_agents):
(actor_gradient, critic_gradient, loss) = gradient_queues[i].get()
actor_gradients.append(actor_gradient)
critic_gradients.append(critic_gradient)
all_action_loss.append(loss[0])
all_entropy.append(-loss[1] / \
float(all_cum_reward[i].shape[0]))
all_value_loss.append(loss[2])
t4 = time.time()
print('worker send back gradients', t4 - t3, 'seconds')
actor_agent.apply_gradients(aggregate_gradients(actor_gradients), args.lr_rate)
critic_agent.apply_gradients(aggregate_gradients(critic_gradients), args.lr_rate)
t5 = time.time()
print('apply gradient', t5 - t4, 'seconds')
print('average reward', avg_per_step_reward * -args.reward_scale)
summary_str = sess.run(summary_ops, feed_dict={
summary_vars[0]: np.mean(all_action_loss),
summary_vars[1]: np.mean(all_entropy),
summary_vars[2]: np.mean(all_value_loss),
summary_vars[3]: np.mean([b.shape[0] for b in all_values]),
summary_vars[4]: avg_per_step_reward * -args.reward_scale,
summary_vars[5]: np.mean([r[0] for r in all_cum_reward]),
summary_vars[6]: np.mean([t for t in all_eps_duration]),
summary_vars[7]: entropy_weight,
summary_vars[8]: reset_prob,
summary_vars[9]: num_stream_jobs,
summary_vars[10]: np.mean([t >= 0 for t in all_eps_duration]),
summary_vars[11]: np.mean(all_eps_finished_jobs),
summary_vars[12]: np.mean(all_eps_unfinished_jobs),
summary_vars[13]: np.mean(all_eps_finished_work),
summary_vars[14]: np.mean(all_eps_unfinished_work),
summary_vars[15]: np.mean(all_average_job_duration)
})
writer.add_summary(summary_str, ep)
writer.flush()
# decrease entropy weight
entropy_weight = decrease_var(entropy_weight,
args.entropy_weight_min, args.entropy_weight_decay)
if ep % args.model_save_interval == 0:
saver.save(sess, args.model_folder + "model_ep_" + str(ep) + ".ckpt")
# perform testing
test_result = run_test(actor_agent)
# plot testing
all_iters.append(ep)
test_mean = np.mean(test_result)
test_std = np.std(test_result)
all_perf[0].append(test_mean - test_std)
all_perf[1].append(test_mean)
all_perf[2].append(test_mean + test_std)
fig = plt.figure()
plt.fill_between(all_iters, all_perf[0], all_perf[2], alpha=0.5)
plt.plot(all_iters, all_perf[1])
plt.xlabel('iteration')
plt.ylabel('Total testing reward')
plt.tick_params(labelright=True)
fig.savefig(args.model_folder + 'test_performance.png')
np.save(args.model_folder + 'test_performance.npy', all_perf)
plt.close(fig)
sess.close()
if __name__ == '__main__':
main()